$\mathsf{LHC} \longrightarrow \mathsf{HL}\mathsf{-}\mathsf{LHC}$

La fase di alta luminosità di LHC

Livio Fanò per CMS Perugia

LHC e CMS - Stato dell'arte

⁶LHC e CMS - Stato dell'arte

High Luminosity - Motivazioni

Il Modello Standard sembra funzionare impeccabilmente: nessuna evidenza diretta di nuova fisica

Alcune domande rimangono aperte: Asimmetria materia/antimateria Cose "oscure" (materia e energia) Gerarchia (consistenza dello SM alla scala di Planck) ...

Inoltre, diverse considerazioni portano a ritenere la scala del TeV come frontiera per l'osservazione di nuovi fenomeni

L'esplorazione del settore EW è quindi decisamente avanzata ed LHC è la macchina più potente a disposizione oggi.

Il Run-3 e il futuro aggiornamento di "alta luminosità" sarà possibile approfondire l'esplorazione ed estendere lo spazio delle fasi soprattutto attraverso le reazioni maggiormente sensibili a contributi di nuova fisica, necessariamente rare

High Luminosity - Piani

High Luminosity - Un mondo ostile

Con alta luminosità la frequenza di collisione pp aumenta, aumenta il Pile-Up (fino a 400 collisioni per xbunch)

Gli strati più interni saranno esposti a fluenze molto elevate, fino a 10¹⁶ 1 MeV neutroni-equivalenti/s*cm²

Anche gli strati esterni in avanti saranno esposti fino a 10¹⁶ 1 MeV neutroni-equivalenti/s*cm²

Il sistema di ricostruzione delle traiettorie (il tracker) è più interno, sarà quindi maggiormente esposto

Le condizioni ambientali vincolano le prestazioni richieste al detector

High Luminosity - Un mondo ostile e quindi un nuovo CMS

200-400 collisioni: danno da radiazione e controllo del combinatorio:

Nuovo tracker, timing layer 3D->4D, calorimetro endcap, muoni in avanti, nuovo DAQ

Goal:

+alta precisione ed efficienza nella ricostruzione degli "oggetti fisici"

+controllo del pile-up, anche con alta precisione nella misura temporale dei segnali

+maggiore accettanza

+alta granularità

High Luminosity - Un nuovo modello di raccolta, distribuzione e analisi dati

I big data sostanzialmente nascono con LHC

Le struttura operativa di WLCG garantisce la raccolta, conservazione, distribuzione ed analisi tra 50-70 PB di dati per anno prodotti da LHC

Il potenziale di misura durante HL-LHC sarà dunque limitato da quanto efficacemente le risorse di calcolo potranno essere sfruttate

R&D intenso lato computing e software:

+"brute force" non è più un approccio vincente

+cambio di paradigma sostanziale, dal GRID al CLOUD

+provisioning dinamico, architetture eterogenee e intelligenza nella gestione delle risorse

+nuove strutture di linguaggio per l'analisi

(Vedi contributo di Daniele di ieri)

Parameter	Run 4 ('27-'30)	Run 5 ('32-'34)		
Com	mon			
LHC Energy [TeV]	1	14		
Average PU	140	200		
Integrated luminosity / year [fb-1]	270 (135 in '27)	350		
Livetime pp / year [s/106]	6 (3 in '27)	8		
Livetime HI / year [s/106]	1.2	-		
Yearly capacity evolution under				
flat budget for disk, CPU, and tape	+15 :	$+15 \pm 5\%$		
(hardware replacement included)				
CMS-Specific				
Prompt HLT Rate [kHz]	5	7.5		
Collected events / year (109)	33	66		
MC events / year (109)	79	100		

High Luminosity - Il ruolo di Perugia

	_	FIS	ING
Università		2.6	3.2
INFN		2.45	0.3
Dottorandi		2.9	0.8
Post-Doc		3.5	0.85
Esterno		0.9	0.9
	FTE	12.35	6.05

+Attività analisi ~300 1/fb e HL-LHC

+Computing model per HL-LHC

+Attività costruzione Tracker di CMS Phase-2 per HL-LHC:
+Sensori e danno da radiazione
+Costruzione tracker: moduli PS e 2S e simulazioni termiche
+Attività di sviluppo del powering (cabling e QA)

Nota: nessun dettaglio tecnico sulle attività mostrate verrà discusso per essere veloce, veloce, velocissimo.

QCD

Studio dell'interazione protoneprotone. Dall'underlying event alle multiparton interactions (anche in dinamica dura)

NP Search EW Vector Boson Scattering

Effective Field Theory and Unitarity in Vector Boson Scattering

Ricostruzione del segnale:

Realizzazione del workflow di misura di efficienza di ricostruzione delle tracce

Sviluppo di algoritmi innovativi per il tracking Phase-2 di CMS

Heavy neutrinos

Stato Open Charm:

Prima misura di sezione d'urto di produzione di open charm in CMS. (collaborazione PG - MI - DESY)

Estensione in collaborazione con DESY: Analizzare tutti i dati del Run2 per misura doppio differenziale e applicazione alla misura del contributo da scattering partonico triplo

VBS in same sign WW con tau adronico VBS in ZVJJ semileptonico

Primo tentativo di inclusione del au_h

Working group PG – LIP nel gruppo generale VBS PD-Paris-PG

Tecniche di ML per la separazione segnale vs fake objects e segnale SM vs EFT (studio di operatori dimensione 6 e dimensione 8)

Benchmark per analysis facility e RDF model (attività similfellow)

Ricerca di Neutrini pesanti

Ricerca di neutrini di Majorana in modelli compositi (segnatura con 2 leptoni e 2 quark)

Full Run-2 - nessuna evidenza ;)

Analisi in finalizzazione - target PLB (2022)

High Luminosity - Sviluppo analysis facility per il post-grid

AF at INFN - Main features INFN 18 Extending the DODAS project toward the building of a CMS analysis facility at INFN: • Highly based on services composition model IFN - Technical Overview Extendible and customizable Service composition: • Adaptive and changeable over time (new technologies, no lock-in) represents a simple atomic service (that • User-driven and requirement-driven acts like a "LEGO brick") • Focus on nanoAOD based workflows (not exclusively) Л Facilitate Python ecosystem exploitation in our environment rHub/Jupyter (+ Spark) on K8s cluste lor on K8s (containerized experiment software deploved on Support exploitation of Machine Learning pipelines USER-1@m • By transparently enabling the usage specialized hardware (SSD, NVMe, GPU, FPGA) ssion to HTCondor via Junyter or HTCondor clien • Targeting CMS but not CMS specific ver cache XBootD cache server at CNA CACHE Local cache Also integrated with the INFN-Cloud (the national federated Cloud infrastructure) and Θ ased authentication via Indigo-IAN fully exportable on other infrastractures using Indigo. IAM CMS insta ransformation service + Posix exploration + Test the workflow Autoscaling based on custom metrics of HTCondor Worker Nodes Generic approach (https://github.com/Cloud-PG/prometheus-hpa) Any metric coming from HTCondor can be used

Avviata l'attività di sviluppo di un modello di Analysis Facility per il "post-grid"

- Abilita/facilita l'uso di NanoAOD (essenziale per HL-LHC)
- Spinta all'uso di strumenti standard (sostenibilità)
- Ottimizzare il throughput nel processing dei dati in fase di analisi

Interfaccia ad alto livello dichiarativa per l'analisi dati - primo esercizio di porting di un'analisi completa (VBS in same sign WW)

R&D verso Run 3 e oltre (HL-LHC)

High Luminosity - Sviluppo e costruzione del tracker di CMS di HL

Il tracciatore di Fase2 di CMS sarà composto da 2 diverse tipologie di moduli (sempre basati su rivelatori a stato solido)

- Moduli 2S: composti da 2 sensori a microstrip di silicio
- Moduli PS: composti da un sensore a micro strip di silicio e un sensore a pixel di silicio

I due sensori sono accopiati e letti da una elettronica comune in modo da poter effettuare una selezione sulla curvatura (energia) della particella

High Luminosity - Sviluppo e costruzione del tracker di CMS di HL Sensor

Process Quality Control - Perugia è uno dei centri per la qualità del processo di fabbricazione su tutti i batches dei sensori previsti per il tracciatore di Fase-2. Setup di Perugia efficiente e veloce per qualificare il processo

Simulazione del danno da radiazione: Standard vs Low Gain Avalanche Diodes

Perugia model

+surface and bulk (new) damage modelling
+n and p-type bulk
+fluence up to 2.2*10¹⁶ eq. neutrons

 Sviluppo del modello e applicazione a LGAD e 3D

High Luminosity - Sviluppo e costruzione del tracker di CMS di HL Moduli

Perugia partecipa alla costruzione sia di moduli 2S che PS Alta precisione meccanica necessaria Shift minori di 50um e rotazioni minori di 400urad richieste!

Attualmente la procedura di costruzione è in fase di ottimizzazione **Primi rivelatori finali da fine del 2021**

Connessione del sensore con l'elettronica di lettura

High Luminosity - CMS/MUonE test beam

High Luminosity - Sviluppo e costruzione del tracker di CMS di HL

Power System

Prototipi di cavi (2 tipologie su 3 la terza tipologia è ancora in fase di produzione)

- Test eseguiti: resistenza e isolamento su cavi CCA (da PP0 a modulo) e da PP1 a PP0 (solo resistenza).
- Eseguiti test termici su cavi CCA
- In fase di definizione i test meccanici e di resistenza alle radiazioni

High Luminosity - Sviluppo e costruzione del tracker di CMS di HL

Simulazioni Termiche

Outer Tracker

studio approfondito della dispersione termica, studio e ottimizzazione del disegno e valutazione delle prestazioni. Analisi del thermal runaway

Inner Tracker

ottimizzazione del disegno meccanico in funzione del controllo del thermal runaway

Ambito di ricerca già attivato: 3 TITOLO: Fisica Sperimentale delle Interazioni Fondamentali

Ambito di ricerca già attivato: 4 TITOLO: Fisica teorica delle Interazioni fondamentali

Ambito di ricerca **nuovo**: 3 TITOLO: Data Science e infrastrutture per Big Data

Ambito di ricerca già attivato: 3 TITOLO: Fisica Sperimentale delle Interazioni Fondamentali

Ambito di ricerca già attivato: 4 TITOLO: Fisica teorica delle Interazioni fondamentali

Ambiti di collocazione canonici mbito di ricerca nuovo: 3

+disegno e sviluppo di rivelatori di particelle ture per Big Data +sviluppo dei sistemi di controllo e gestione dei rivelatori (operations) +analisi dei dati prodotti ad LHC (e HL-LHC) +interpretazione con i modelli fisici (proton structure, EFT e modelli compositi)

Importanti (storiche e non) collaborazioni in UNIPG

+Ingegneria (meccanica e elettronica) +Informatica Esplorazione con alcune competenze nel territorio (realtà importanti di produzione elettronica e system test) per un nuovo modello di gestione dei processi di costruzione in HEP di larga scala.

L'idea è quella di disaccoppiare disegno e sviluppo da produzione

Forse utile per l'azione UNIPG/ PNRR in corso di proposta di un distretto innovativo

Ambito di ricerca già attivato: 3	Sviluppo dei modelli propri di accesso e analisi dati per LHC e HL-LHC
TTOLO. FISICa Sperimentale delle interazioni Fonda	nentan
Ambito di ricerca già attivato: 4 TITOLO: Fisica teorica delle Interazioni fondamentali	Tentativo di costruire un ambito disciplinare congiunto Dipartimento/
	Spige) altemente tracversale
	Spiga) - allamente trasversale
Ambito di ricerca nuovo: 3 TITOLO: Data Science e infrastrutture per Big Data	 Interessante convergenza verso l'azione collaborativa "digitale, industria e spazio", in particolare per gli aspetti di: 1) WP 4_1 - Data Science 2) WP 4_4 - Scienza dell'informazione e HPC

1) sforzo per intercettare le necessità	
locali legate al calcolo attraverso	Sviluppo dei modelli propri di accesso e
Aruna ricognizione puntuale: 3	analisi dati per LHC e HL-LHC
2) strutturare un'azione progettuale che	azioni Fondamentali
possa agganciare le opportunità	Tentativo di costruire un ambito
Arlocali, nazionali ed europee 4	disciplinare congiunto Dipartimento/
3) integrare il C_LAB di calcolorrazioni	ondamentali INFN di "data science" (con Daniele
4) convergere in una struttura	Spiga)
congiunta UNIPG/INFN/CNR	
Tecnicamente, a partire dai paradigmi	er Big Data
innovativi di gestione delle risorse per i	spazio", in particolare per gli aspetti di:
big data sviluppati in ambito HEP,	1) WP 4_1 - Data Science
adattandole senza snaturarle alle	2) WP 4_4 -Scienza dell'informazione
esigenze locali (ne parleremo più in	e HPC
dettaglio in consulta della ricerca)	PNBR - esplorazione della possibilità di partecipare al

futuro CN di calcolo (probabilmente INFN/CINECA driven)

Futuro Remoto, post 2040

Nuova infrastruttura che possa estendere sensibilmente la frontiera dell'energia (100 TeV) e caratterizzazione elettrodebole di precisione (5-700 GeV)

Modalità multipla di funzionamento hh, ee e eh

An <u>FCC conceptual design report</u> was submitted as input to the 2020 <u>update of the European Strategy for Particle Physics</u>. Following adoption of this update by the CERN Council in 2020, CERN was mandated to carry out a technical and financial feasibility study for the FCC to be ready for the next update of the strategy, foreseen for 2027.