

Fasi Topologiche della Materia alla SIT

Dr M. Cristina Diamantini Prof, Luca Gammaitoni

Valerii Vinokur London Prize 2020

Leibniz Institute for Solid State and Materials Research Dresden

Flavio Noguiera Nicola Poccia

Topological States of Matter

Different states of matter are distinguished by their internal structure ≈ orders associated with symmetries (breaking of)

1982 FQE states: no symmetry breaking → new quantum order, topological order (Wen 1990)

Low energy effective field theories for such states involve topological field theories: Chern-Simons, BF

Superconducor to insulator transition (SIT) in 2d films TiN NbTiN

SIT is driven by the competition between charge (Cooper pairs) and vortex

quarks bound by (chromo)- electric strings in a condensate of (chromo)-magnetic monopoles (Mandelstam, 't Hooft, Polyakov)

mirror analogue to vortex formation in type II superconductors

Polyakov's magnetic monopole condensation \Rightarrow **linear confinement** of Cooper pairs

superinsulating phase

- confining string action in (2+1)d using a lattice regularization
- deconfining properties at T= 0 and at finite temperature

(3+1) d case

- topological insulating phase
- boundary excitations
- transition to the superconducting phase (T=0 and T≠ 0)
- superconducting phase