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The special case of Λ form factors 

The meaning of the phase determination

The ratio GΛ
E /GΛ

M

Data and parametrization

Results and discussion



The electromagnetic four-current of the baryon ℬ

⟨Pf Jμ
𝖤𝖬(0) Pi⟩ = eū(pf )[γμFℬ

1 (q2)+
iσμνqν

2Mℬ
Fℬ

2 (q2)] u(pi)

 and  are the Dirac and Pauli form factorsFℬ
1 (q2) Fℬ

2 (q2)

  
 is the electric charge

Fℬ
1 (0) = Qℬ

Qℬ

 
 is the anomalous magnetic moment

Fℬ
2 (0) = κℬ

κℬ

Breit frame

pf = (E, ⃗q/2)

pi = (E, − ⃗q/2)

q = (0, ⃗q)

⟨Pf Jμ
𝖤𝖬(0) Pi⟩ = Jμ

𝖤𝖬 = (J0
𝖤𝖬, ⃗J𝖤𝖬)

J0
EM = e (Fℬ

1 (q2) +
q2

4M2
ℬ

Fℬ
2 (q2))

Sachs form factors

Gℬ
E (q2) = Fℬ

1 (q2) +
q2

4M2
ℬ

Fℬ
2 (q2)

Gℬ
M (q2) = Fℬ

1 (q2) + Fℬ
2 (q2)

⃗JEM = e ū(pf ) ⃗γu(pi)(Fℬ
1 (q2) + Fℬ

2 (q2))

Gℬ
E (0) = Qℬ  

 is the total magnetic moment
Gℬ

M (0) = Qℬ + κℬ = μℬ
μℬ
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Elastic scattering cross section (Rosenbluth)

e−(Ee)

e−(E′￼e)

ℬ ℬ

dσ
dΩ

=
α2E′￼e cos2(θ/2)
4E3

e sin4(θ/2) [(Gℬ
E )2 − τ (1 + 2(1 − τ)tan2(θ/2)) (Gℬ

M )2] 1
1 − τ

dσ
dΩ

=
α2β𝒞
16E2 [(1 + cos2(θ)) Gℬ

M

2
+

1
τ

sin2(θ) Gℬ
E

2]
Annihilation cross section ℬ(E)

ℬ(E)

e+

e−

τ =
E2

4M2
ℬ

β = 1 −
1
τ

ℬ

ℬ
γ

𝒞 =
πα/β

1 − e−πα/β

Only S-wave  Coulomb final state interactionℬℬ

Coulomb correction



In pQCD Dirac, Pauli and Sachs form factors as  
 follow power laws driven by counting rules.q2 → − ∞

P
ha

se
 S

um
m

ar
y 

- 6
 D

ec
em

be
r

simone.pacetti@unipg.it

q
q
q

g
g

γ(q)

Valence quarks exchange gluons to distribute  
the photon momentum transfer . q

Helicity conservation

The current: Jλ,λ(q2) ∝ Gℬ
M (q2)

2 gluon propagators

Gℬ
M (q2) ∼ (q2)−2

Helicity flip

The current: Jλ,−λ(q2) ∝ Gℬ
E (q2)/ −q2

[2 gluon propagators]/ −q2

Gℬ
E (q2) ∼ (q2)−2

Dirac and Pauli form factors

Fℬ
2 (q2) ∼

q2→−∞
(q2)−3

Fℬ
1 (q2) ∼

q2→−∞
(q2)−2

Ratio of Sachs form factors

Gℬ
E (q2)

Gℬ
M (q2)

∼
q2→−∞

[constant]

V. A. Matveev, R. M. Muradian, A. N. Tavkhelidze, LNC 7 (1973) 719  
S. J. Brodsky, G. R. Farrar, PRL 31 (1973) 1153  
M. V. Galynsky, E. A. Kuraev JETPL 96 (2012) 6
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time

γ

ℬ

ℬ|n⟩ ⟨n |

Crossing symmetry

⟨P(p′￼) | jμ |P(p)⟩ ⟶ ⟨P(p′￼)P(p) | jμ |0⟩

Form factors are complex functions of q2

Im (⟨P(p′￼)P(p) | jμ |0⟩) ∼ ∑
n

⟨P(p′￼)P(p) | jμ |n⟩⟨n | jμ |0⟩ ⟹ {
Im (Fℬ

1,2(q2)) ≠ 0

for q2 > 4M2
π

Optical theorem

 is an on-shell intermediate state, i.e., |n⟩ |n⟩ = 2π, 3π, 4π, …

Phragmén Lindelöf theorem  
If  as  along the straight 
line , and  as  along 
the straight  line , and  is regular 
and bounded in the angle between, then 

 and  uniformly in 
the region between  and .

f(z) → f1 z → ∞
L1 f(z) → f2 z → ∞

L2 f(z)

f1 = f2 ≡ f12 f(z) → f12
L1 L2

Behavior in the time-like region

lim
q2→−∞

Gℬ
E,M(q2)

space-like (L1)

= lim
q2→+∞

Gℬ
E,M(q2)

time-like (L2)

Gℬ
E,M(q2) ∼

q2→+∞
(q2)−2 ∈ ℝ



eℬ → eℬ

Space-like region

q2 < 0

Gℬ
E , Gℬ

M

ℬℬ → e+e−ℳ0

Time-like region*

q2
𝗍𝗁 < q2 ≤ q2

𝗉𝗁𝗒

Gℬ
E , Gℬ

M

Time-like region

q2 > q2
𝗉𝗁𝗒

e+e− ↔ ℬℬ
Gℬ

E , Gℬ
M

 (pol.)e+e− ↔ ℬℬ
Gℬ

E , Gℬ
M , arg (Gℬ

E /Gℬ
M )
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 c
om

pl
ex

 p
la

ne
q2

Only the real axis of the -complex plane is experimentally accessibleq2

Space-like region 
Real form factors

Time-like region 
Complex form factors

Unphysical regionℬ

ℳ0

ℬ
ℬ ℬ

ℬ
ℬee

e+

e+
e−

e−

Im(z)

Re(z) = q2q2
𝗉𝗁𝗒 = 4M2

ℬ
q2

𝗍𝗁 = 4M2
π

*In case of : C. Adamuscin, E. A. Kuraev, E. Tomasi-Gustafsson, F. Maas PRC 75, 045205  
E. A. Kuraev et al., JETP 115, 93  
G. I. Gakh, E. Tomasi-Gustafsson, A. Dbeyssi, A. G. Gakh PRC 86, 025204

ℬ = p
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Λ(E)
e+e−

Λ(E)
dσ
dΩ

=
α2β𝒞
16E2 [(1 + cos2(θ)) Gℬ

M

2
+

1
τ

sin2(θ) Gℬ
E

2]
τ =

E2

4M2
ℬ

β = 1 −
1
τ

𝒞 = 1

Space-like region 
Real form factors

Time-like region 
Complex form factors

Unphysical regionΛ

η

Λ Λ Λ

Λ
Λee

e+

e+
e−

e−

Im(z)

Re(z) = q2q2
𝗉𝗁𝗒 = 4M2

Λ
q2

𝗍𝗁 = (2Mπ + Mπ0)2

Theoretical threshold 
.q2

𝗍𝗁 = (2Mπ + Mπ0)2

No data in space-like 
and unphysical regions.

Relative phase from  
the weak decay.

q2

GΛ(q2)
Unitarity: only isoscalar intermediate states do contribute.

Form factors have imaginary parts for .q2 ≥ q2
𝗍𝗁

The electric form factor  vanishes at GΛ
E (q2) q2 = 0
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𝖱𝖾(z)

𝖨𝗆(z)

q2

ℛ

time-likespace-like

q2
𝗍𝗁

The form factors are analytic on the -complex plane  
with a multiple cut .

q2

(q2
𝗍𝗁, ∞)

Dispersion relation for the imaginary part (q2 < 0)

G(q2) = lim
ℛ→∞

1
2iπ ∮𝒞

G(z)
z − q2

dz =
1
π ∫

∞

q2
𝗍𝗁

𝖨𝗆(G(s))
s − q2

ds

Dispersion relation for the logarithm  
B. V. Geshkenbein, Yad. Fiz. 9 (1969) 1232.

(q2 < 0) ln(G(q2)) =
q2

𝗍𝗁 − q2

π ∫
∞

q2
𝗍𝗁

ln |G(s) |

(s − q2) s − q2
𝗍𝗁

ds

Experimental inputs
Space-like data on real values of  
form factors from:  and  

, with polarization.
eℬ → eℬ

e−↑ℬ → e−ℬ↑

Time-like data on moduli of form  
factors from: .e+e− ↔ ℬℬ
Time-like data on the phase of  

 from: ,  
with polarization.
Gℬ

E /Gℬ
M e+e− ↔ ℬ↑ℬ

Theoretical ingredients
Analyticity  convergence relations⟹

Normalization and threshold values

Asymptotic  
behavior

super-convergence 
relations

⟹



A
dv

an
ta

ge
s

space-like

form factor
eℬ → eℬ

= ∫
∞

q2
𝗍𝗁

Im (form factor)  or  ln( | form factor |)
over the time-like cut (q2

𝗍𝗁, ∞)
e+e− → ℬℬ + theory

Dispersion relations are based on unitarity and analyticity  model-independent.⟹
Dispersion relations relate from different precesses in different energy regions

Normalizations and theoretical constraints can be directly implemented.

Form factors can be computed in the whole -complex plane.q2

Poles cancel out in the ratio.
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Very long-range integration

No data in the unphysical region, crucial in dispersive analyses.

D
ra

w
ba

ck
s

Remedy  #1 
pQCD power laws

Remedy  #2 
Subtracted dispersione relations
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Scattering plane
Baryon⃗p x

y

z

The ratio  in complex for Gℬ
E (q2)/Gℬ

M (q2) q2 > q2
𝗍𝗁

Gℬ
E (q2)

Gℬ
M (q2)

=
Gℬ

E (q2)

Gℬ
M (q2)

eiρ(q2)

𝒫y = −
sin(2θ)sin(ρ)

D τ

Gℬ
E

Gℬ
M

=
dσ↑ − dσ↓

dσ↑ + dσ↓
≡ 𝒜y

𝒫z = Pe
2 cos(θ)

D }

𝒫x = − Pe
2 sin(2θ)cos(ρ)

D τ

Gℬ
E

Gℬ
M

The polarization depends on the relative phase .ρ(q2)

[A. Z. Dubnickova, S. Dubnicka, M. P. Rekalo, NC A109 (1996) 241]

D = 1 + cos2(θ) +
Gℬ

E
2

Gℬ
M

2
sin2(θ)

τ

τ =
q2

4M2
ℬ

 is the scattering angle.θ
 is the electron polarization.Pe

Does not depend on .Pe

Does not depend on the relative phase .ρ
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𝒫y = −
2MΛ q2 sin(2θ) GΛ

E /GΛ
M sin (arg (GΛ

E /GΛ
M))

q2 (1 + cos2(θ)) + 4M2
Λ GΛ

E /GΛ
M

2
sin2(θ)

sin (arg (GΛ
E /GΛ

M))

BaBar 2007
Phys. Rev. D 76 (2007) 092006

BESIII 2019
Prys. Rev. Lett. 123 (2019) 122003

Polarization  sine of the relative phase.⟶

Spin correlation  cosine of the relative phase.⟶

No indication on the determination of the relative phase.

Is the determination of the phase meaningful?
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Given the function  with  poles  and  zeros  

 and the positive real cut .

R(z) N {pj}N
j=1 M

{zk}M
k=1 (x0, ∞)Γr

The residue theorem over the  contourΓr

.lim
r→∞

1
2iπ ∮Γr

d ln(R(z))
dz

dz = M − N

Considering single contributions

.lim
r→∞

1
2iπ ∮Γr

d ln(R(z))
dz

dz =
arg(R(∞)) − arg(R(x0))

π

.arg(R(∞)) − arg(R(x0)) = π(M − N )

Form factors are analytic in the  complex plane with the real positive cut .q2 (q2
𝗍𝗁, ∞)

Assuming no zeros for , the ratio  has the same analyticity domain.GΛ
M GΛ

E /GΛ
M

Form factors and hence the ratio  are real for .GΛ
E /GΛ

M q2 ∈ (−∞, q2
𝗍𝗁)

lim
q2→q2−

𝗍𝗁

arg ( GΛ
E (q2)

GΛ
M(q2) ) =

0 GΛ
E (q2−

𝗍𝗁 )/GΛ
M(q2−

𝗍𝗁 ) > 0
.

±π GΛ
E (q2−

𝗍𝗁 )/GΛ
M(q2−

𝗍𝗁 ) < 0

Levinson’s theorem
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The ratio R(q2) =
GΛ

E (q2)
GΛ

M(q2)
⟹ {

GΛ
E (0) = 0

GΛ
E (q2

𝗉𝗁𝗒) = GΛ
M(q2

𝗉𝗁𝗒)} ⟹ {
R(0) = 0

R(q2
𝗉𝗁𝗒) = 1}

The asymptotic behavior

Dispersion relations for the imaginary and real part with subtraction at :q2 = 0

;R(q2) = R(0) +
q2

π ∫
∞

q2
𝗍𝗁

𝖨𝗆(R(s))
s(s − q2)

ds =
q2

π ∫
∞

q2
𝗍𝗁

𝖨𝗆(R(s))
s(s − q2)

ds , ∀ q2 ∉ [q2
𝗍𝗁, ∞)

;𝖱𝖾(R(q2)) =
q2

π
Pr∫

∞

q2
𝗍𝗁

𝖨𝗆(R(s))
s(s − q2)

ds , ∀ q2 ∈ [q2
𝗍𝗁, ∞)+

The subtraction ensures the null normalization at .q2 = 0

 as .R(q2) =
GΛ

E (q2)
GΛ

M(q2)
= 𝒪(1) q2 → ± ∞



: two data points from BaBar and one data point from BESIII.R(q2)

𝖨𝗆(R(q2)) ≡ Y(q2; ⃗C , q2
𝖺𝗌𝗒) =

P

∑
j=0

CjTj(x(q2)) q2
𝗍𝗁 < q2 < q2

𝖺𝗌𝗒

0 q2 ≥ q2
𝖺𝗌𝗒

x(q2) = 2
q2 − q2

𝗍𝗁

q2
𝖺𝗌𝗒 − q2

𝗍𝗁
− 1

q2 ∈ [q2
𝗍𝗁, q2

𝖺𝗌𝗒] ⇒ x ∈ [−1,1]
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The ratio  is parametrized through the set of Chebyshev polynomials .R(q2) {Tj(x)}
P

j=0

Theoretical constraints on Y(q2; ⃗C , q2
𝖺𝗌𝗒)

 is real R(q2
𝗍𝗁) ⟹ Y(q2

𝗍𝗁; ⃗C , q2
𝖺𝗌𝗒) = 0

 is real R(q2
𝗉𝗁𝗒) ⟹ Y(q2

𝗉𝗁𝗒; ⃗C , q2
𝖺𝗌𝗒) = 0

 is real R(q2 ≥ q2
𝖺𝗌𝗒) ⟹ Y(q2 ≥ q2

𝖺𝗌𝗒; ⃗C , q2
𝖺𝗌𝗒) = 0

Theoretical constraints on 𝖱𝖾(R(q2))

𝖱𝖾(R(q2
𝗉𝗁𝗒)) =

q2
𝗉𝗁𝗒

π
Pr∫

q2
𝖺𝗌𝗒

q2
𝗍𝗁

Y(s; ⃗C ; q2
𝖺𝗌𝗒)

s(s − q2
𝖺𝗌𝗒)

ds = 1

𝖱𝖾(R(q2
𝖺𝗌𝗒)) =

q2

π
Pr∫

q2
𝖺𝗌𝗒

q2
𝗍𝗁

Y(s; ⃗C ; q2
𝖺𝗌𝗒)

s(s − q2
𝖺𝗌𝗒)

ds = 1

Experimental constraints in the time-like region (q2 > q2
𝗉𝗁𝗒)

: one data point from BaBar and one data point from BESIII.sin (arg (R(q2)))



The value of the regularization parameter  is selected in order to attenuate spurious oscillations.τ𝖼𝗎𝗋𝗏

Too large values of  would cancel physical information.τ𝖼𝗎𝗋𝗏
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χ2 ( ⃗C , q2
𝖺𝗌𝗒) = χ2

|R| + χ2
ϕ + τ𝗉𝗁𝗒 χ2

𝗉𝗁𝗒 + τ𝖺𝗌𝗒 χ2
𝖺𝗌𝗒 + τ𝖼𝗎𝗋𝗏 χ2

𝖼𝗎𝗋𝗏

Data {q2
j , |Rj | , δ |Rj |}

3

j=1
⟶ χ2

|R| =
3

∑
j=1

X(q2
j )2 + Y(q2

j )2 − |Rj |

δ |Rj |

2

Data {q2
k , sin(ϕk), δ sin(ϕk)}2

k=1
⟶ χ2

ϕ =
2

∑
k=1

sin (arctan (Y(q2
k )/X(q2

k )) − sin(ϕk)

δ sin(ϕk)

2

Constraint at q2 = q2
𝗉𝗁𝗒 ⟶ χ2

𝗉𝗁𝗒 = (1 − X(q2
𝗉𝗁𝗒))

2

Constraint at q2 = q2
𝖺𝗌𝗒 ⟶ χ2

𝖺𝗌𝗒 = (1 − X(q2
𝖺𝗌𝗒)2)

2

Oscillation damping ⟶ χ2
𝖼𝗎𝗋𝗏 = ∫

q2
𝖺𝗌𝗒

q2
𝗍𝗁

( d2Y(s)
ds2 )

2

ds

The values of multipliers  and  are chosen 

larger enough to nullify the corresponding ’s 
so that the conditions are exactly verified. 

τ𝗉𝗁𝗒 τ𝖺𝗌𝗒
χ2

The integral equation obtained by the dispersion 
relations is an ill-posed problem whose solution 
has to be regularized.

Too small values  would leave an unreliable level of noise.τ𝖼𝗎𝗋𝗏

X(q2) ≡ 𝖱𝖾(R(q2))
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The theoretical constraints   

determine the three coefficients: . 

Y(q2
𝗍𝗁; ⃗C , q2

𝖺𝗌𝗒) = Y(q2
𝗉𝗁𝗒; ⃗C , q2

𝖺𝗌𝗒) = Y(q2
𝖺𝗌𝗒; ⃗C , q2

𝖺𝗌𝗒) = 0
C0, C1, C2

The asymptotic threshold  is left as a free parameter.q2
𝖺𝗌𝗒

By considering  Chebyshev polynomials there are  free coefficients.(P + 1) (P − 2)

We have used  and hence there are four free parameters:  and .P = 5 C3, C4, C5 q2
𝖺𝗌𝗒

 
The real part of  is forced to the unity at .

τ𝗉𝗁𝗒 = 102

R(q2) q2 = q2
𝗉𝗁𝗒

 
No constraint for the real part of  at .

τ𝖺𝗌𝗒 = 0
R(q2) q2 = q2

𝖺𝗌𝗒

 
Low-degree polynomials do not need strong damping.
τ𝖼𝗎𝗋𝗏 = 0.05
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N𝗍𝗁,𝖺𝗌𝗒 =
1
π

arg (
GΛ

E (q2
𝗍𝗁,𝖺𝗌𝗒)

GΛ
M(q2

𝗍𝗁,𝖺𝗌𝗒) ) ∈ ℕ

The lack of data prevents obtaining unique pairs .(N𝗍𝗁, N𝖺𝗌𝗒)

At the thresholds  and  the values of the ratio are real hence 

the phases are integer multiples of  radiants

q2
𝗍𝗁 q2

𝖺𝗌𝗒
π

The strong theoretical constraints reduce to 8 the number of 
possible pairs  compatible with the few data points.  (N𝗍𝗁, N𝖺𝗌𝗒)

A Monte Carlo procedure, defined to make a statistical study of the 
results, gives the probability of occurrence of each pair .(N𝗍𝗁, N𝖺𝗌𝗒)

N𝗍𝗁 N𝖺𝗌𝗒 %
−1 0 4.0
−1 1 16.0
−1 2 50.5
−1 3 0.7
0 1 0.3
0 3 26.8
1 2 0.1
1 3 1.6

Cases with a probability of 
occurrence lower than 
0.5% are discarded. 



(-1,0) (-1,1) (-1,2) (-1,3)
4.0% 16.0% 50.5% 0.7%
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Levinson’s theorem with no poles 
(no zeros for )GΛ

M(q2) (0,3) (1,3)
1.6%26.8%

GΛ
E (0) = 0 ⟹ N𝖺𝗌𝗒 ≥ N𝗍𝗁 + 1

The bands represent the one-sigma-error computed 
by the standard statistical analysis of the set of 
results obtained with a Monte Carlo procedure.

The dispersive procedure, connecting experimental information on the modulus of the ratio  and on the sine 
of its phase under the aegis of strong theoretical constraints, assigns different determinations to the phase. 

R(q2)

The determination of the measured values of the phase is also established by the dispersive procedure.

In the case  the BESIII and BaBar phase data have different determinations.(N𝗍𝗁, N𝖺𝗌𝗒) = (−1,3)

N𝖺𝗌𝗒 − N𝗍𝗁 = number of zeros of  
and  in .

R(q2)
GΛ

E (q2) ℂ\(q2
𝗍𝗁, ∞){
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Dynamical and static features of the baryon  can be inferred from the complete 
knowledge of its form factors as functions of .

Λ
q2

⟨rE⟩2 = 6
dGE(q2)

dq2
q2=0

The charge radius squared  

of an extended particle, as a 
baryon, is proportional to the first 

derivative of the electric form 
factor  at . 

⟨rE⟩2

GE(q2) q2 = 0

In the Breit frame, where 
 is purely space-like, 

the electric form factor is the 
Fourier transform of the spacial 
charge distribution.

q = (0, ⃗q)

For a neutral baryon, like the , the Sachs form factors at  are normalized as:  and 
, then, the charge radius squared is also proportional to the first derivative at  of 

the ratio  

Λ q2 = 0 GE(0) = 0
GM(0) = μ ≠ 0 q2 = 0

R(q2) = GE(q2)/GM(q2)

.
dR(q2)

dq2
q2=0

=
1

GM(q2) ( dGE(q2)
dq2

−

=0 𝖺𝗍 q2=0

GE(q2)
GM(q2)

dGM(q2)
dq2 )

q2=0

=
1

GM(q2)
dGE(q2)

dq2
q2=0

=
1
μ

⟨rE⟩2

6

⟨rE⟩2 = 6μ
dR(q2)

dq2
q2=0

=
6μ
π ∫

∞

q2
𝗍𝗁

𝖨𝗆(R(s))
s2

ds =
6μ

πΔq2

N

∑
j=0

Cj ∫
1

−1

Tj(x)dx

(x + 1 + q2
𝗍𝗁/Δq2)2

The first derivative at  of the ratio  is computed by means of the dispersione relation for the 
imaginary part

q2 = 0 R(q2)

with .Δq2 = (q2
𝖺𝗌𝗒 − q2

𝗍𝗁)/2



(ϕ(q2
𝗍𝗁), ϕ(q2

𝖺𝗌𝗒))

r̄n
E −r̄n

E

4.0%

16.0%

50.5%

0.7%

26.8%

1.6%

r̄Λ
E (𝖿𝗆)
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The neutron has a negative squared charge radius: ⟨rn
E⟩2 = − 0.1161 ± 0.0022 𝖿𝗆2

To have a better understanding of 
the linear extension of the baryon.

r̄E ≡ 𝖲𝗂𝗀𝗇 (⟨rE⟩2) ⟨rE⟩2

Those values of  compatible with  can be heuristically interpreted in terms of the 
different time periods that the valence quarks of the same charge spend at a certain 

distance from the center of the baryon.

r̄Λ
E −r̄n

E
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A dispersive procedure based on data and first principles such as analyticity and 
unitarity has been defined to study the ratio of electric and magnetic form 
factors of the  baryon.Λ

By taking advantage of the measured values of the modulus and the phase of the 
ratio in the time-like region, as well as on theoretical constraints, the procedure 
allows us to gain crucial information on the space-like behavior of the ratio, which 
is not experimentally accessible. 

Assuming no zeros for the magnetic form factor, the asymptotic value of the 
phase counts the number of the zeros of the electric form factor, which, being 
the  a neutral baryon, is at least one:Λ

.Δϕ = ϕ(∞) − ϕ(q2
𝗍𝗁) = π (N𝖺𝗌𝗒 − N𝗍𝗁) ≥ π

The most probable values give , hence, two additional zeros for .Δϕ = 3π GΛ
E (q2)

New data, especially for the sine of the phase, would be crucial to at least identify 
its trend and then have hints of the phase determination.
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Amplitudes separation and strong-electromagnetic relative phase
in the ψð2SÞ decays into baryons
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In the framework of a phenomenological model based on an effective Lagrangian, that allows us to
exploit all available data, we have obtained the strong, electromagnetic and mixed strong-electromagnetic
amplitudes of the ψð2SÞ decays into baryon-antibaryon pairs. The analysis, repeating the procedure
successfully implemented in the case of the leading vector charmonium J=ψ , revealed a new and quite
intriguing phenomenon, that by itself triggered a further quite interesting finding. The phenomenon is the
high affinity of the ψð2SÞ meson with the ΛΛ̄ pair, at a level that cannot be justified by the model. As a
consequence, we excluded the ΛΛ̄ channel from the set of experimental constraints by largely improving
the description power of the model, which then led to another interesting result: the QCD regime turned out
to be perturbative already at the ψð2SÞ mass. Finally, the comparison with the results obtained for the J=ψ
has shown that the main difference with respect to the ψð2SÞ concerns the SU(3) breaking source due to the
quark mass difference. As expected, consequently to its larger mass, the effects of such a difference are less
important for the ψð2SÞ with respect to the J=ψ meson.

DOI: 10.1103/PhysRevD.103.016005

I. INTRODUCTION

Since their discovery, the cc̄ mesons, the so-called
charmonia, have been representing unique tools to expand
our knowledge on the dynamics of the strong interaction at
various energy ranges.
The hadronic decays of the J=ψ meson, a charmonium

with quantum numbers IGðJPCÞ ¼ 0−ð1−−Þ, mass MJ=ψ≃
3.1 GeV, and width ΓJ=ψ ≃ 9.3 × 10−5 GeV [1], have been
deeply investigated. Recently, it has been found that they
occur halfway between the perturbative and nonperturba-
tive QCD regime [2]. Moreover, it has been shown that the
mixed strong-electromagnetic (strong-EM) amplitude of
the J=ψ decays is not always negligible [3].

The procedure to single out the strong, the EM and
the mixed strong-EM amplitudes of the decay of a
charmonium state into baryon-anti-baryon (BB̄) pairs
belonging to the spin-1=2 SU(3) baryon octet has been
defined and implemented for the first time in the case of the
J=ψ meson [2].
Such a procedure is based on an effective Lagrangian

including SU(3) symmetry breaking terms, depending on a
set of coupling constants to be determined by means of a χ2

minimization.
The whole datasets made available by the Particle Data

Group (PDG) [1], together with new results provided by the
BESIII Collaboration [4] have been used.
In the case of the J=ψ , the strong, the EM and the mixed

strong-EM contributions to the total branching ratio (BR),
as well as a strong-EM relative phase φJ=ψ ¼ ð73$ 8Þ°
have been determined [2].
The ψð2SÞ is a charmonium vector meson usually

regarded as the first orbit excited state of J=ψ . It has the
same quantum numbers, i.e., IGðJPCÞ ¼ 0−ð1−−Þ, mass
Mψð2SÞ ≃ 3.7 GeV and width Γψð2SÞ ≃ 2.9 × 10−4 GeV [1].

*alessio.mangoni@pg.infn.it
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It is natural to expect that the decays of both, J=ψ and
ψð2SÞ, into the same BB̄ final states do proceed through
similar decay mechanisms. Nevertheless, there is exper-
imental evidence that in some channel, as for instance:
eþe− → J=ψ → Σ0Σ̄0;ΛΛ̄ and eþe− → ψð2SÞ → Σ0Σ̄0;
ΛΛ̄, the decays have significantly different angular dis-
tributions [4,5].
It follows that a deeper study of the dynamics of the

ψð2SÞ decays into baryon-antibaryon pairs, in the same
theoretical framework that has been used for the J=ψ [2],
would be quite useful.
The paper is organized as it follows. First, we briefly

reviewed the model based on an effective strong
Lagrangian that is used to parametrize the decay amplitudes
in terms of a set of coupling constants. Second, we
explicitly outlined the procedure to build up the amplitudes,
by considering the three contributions: purely strong,
purely EM and mixed strong-EM. The latter, in particular,
is related to the ratio of the mixed-to-strong amplitude R,
just as for the J=ψ meson. However, it was in this study that
the parameter R played the crucial role of revealing that
already at the ψð2SÞ mass the QCD does operate in
perturbative regime.
Finally, we studied the χ2 function, exploited to deter-

mine the coupling constants by fitting to the data on the
branching ratios (BRs) of the ψð2SÞ decays and we noticed
an anomalous affinity, inexplicable by the model, of the
ψð2SÞ itself with the ΛΛ̄ channel. As a consequence, we
made the analysis by not using the experimental constraint
of the ΛΛ̄ channel.
The parametrization at the amplitude level did allow to

extract also the relative phase between strong and EM
amplitudes, and the obtained value is compatible with the
hypothesis of orthogonality, being φ ¼ ð87% 15Þ°.

II. THE EFFECTIVE LAGRANGIAN MODEL

The decays ψð2SÞ → BB̄, where B stands for a spin-1=2
baryon belonging to the flavor SU(3) octet, represented by
the matrix

B ¼

0

B@
Λ=

ffiffiffi
6

p
þ Σ0=

ffiffiffi
2

p
Σþ p

Σ− Λ=
ffiffiffi
6

p
− Σ0=

ffiffiffi
2

p
n

Ξ− Ξ0 −2Λ=
ffiffiffi
6

p

1

CA;

can be studied by means of the procedure developed and
successfully implemented in the case of the J=ψ meson.
The effective Lagrangian density L, which describes the

coupling of the ψð2SÞ to baryon-antibaryon pairs BB̄, and
hence its decays ψð2SÞ → BB̄, is formally defined as [2]

L ¼ CTrðBB̄Þ þ ½symmetry-breaking terms';

where C is a constant and the SU(3) symmetry-breaking
terms are due to EM and quark-mass-difference effects.

The EM breaking effects, depending on the quark electric
charges, i.e., from their coupling with the photon, are given
by the four-current

q̄γμΛEq≡ 2

3
ūγμu −

1

3
d̄γμd −

1

3
s̄γμs;

where the matrix ΛE can be expressed as the combination
of the third, λ3, and the eighth, λ8, Gell-Mann matrix, i.e.,

ΛE ¼ 1

2

"
λ3 þ

λ8ffiffiffi
3

p
#
:

Similarly, the quark-mass-difference breaking effects are
related to the mass term

q̄ΛMq≡muūuþmdd̄dþmss̄s;

and the corresponding matrix ΛM, in terms of the Gell-
Mann matrices and the identity I, has the form

ΛM ¼ m0I þ
md −msffiffiffi

3
p λ8 þ

mu −md

6
ð2I þ 3λ3 þ

ffiffiffi
3

p
λ8Þ;

where

m0 ¼
mu þmd þms

3
:

We keep the SU(2) symmetry exact, assuming that
mu ¼ md, and hence isospin conservation, so that

ΛM ¼ m0I þ
md −msffiffiffi

3
p λ8; m0 ¼

2md −ms

3
:

Therefore, the SU(3) symmetry breaking terms are related
to the so-called spurion matrices

Se ¼ geΛE; Sm ¼ gmðΛM −m0IÞ;

where ge and gm are the coupling constants. The full
Lagrangian density is obtained by adding to the leading
term proportional to TrðBB̄Þ, further terms proportional
to [6]

TrðfB; B̄gSÞ; Trð½B; B̄'SÞ;

with S ∈ fSe; Smg. The complete Lagrangian density is
then defined as

L ¼ gTrðBB̄Þ þ dTrðfB; B̄gSeÞ þ fTrð½B; B̄'SeÞ
þ d0TrðfB; B̄gSmÞ þ f0Trð½B; B̄'SmÞ; ð1Þ

where g; d; f; d0; f0 are coupling constants.

FERROLI, MANGONI, PACETTI, and ZHU PHYS. REV. D 103, 016005 (2021)
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Such a Lagrangian density allows us to parametrize the
subamplitudes for the decays ψð2SÞ → BB̄. For more
details please refer to Ref. [2].

III. THE AMPLITUDE SEPARATION

The amplitude of the generic decay ψð2SÞ → BB̄ can be
decomposed as the sum of three contributions

ABB̄ ¼ Aggg
BB̄ þAγ

BB̄ þAggγ
BB̄ :

The sub-amplitudes Aggg
BB̄ , A

γ
BB̄ and Aggγ

BB̄ are related to the
three dominant decay mechanisms: purely strong, i.e.,
mediated by three gluons; purely EM, through one-photon
exchange; mixed strong-EM, via two gluons and one
photon. The Feynman diagrams of these intermediate
processes are shown in Fig. 1.
By taking advantage of the Lagrangian density of

Eq. (1), the amplitudes of each BB̄ final state can be

parametrized as shown in Table I [2], where the quantities
G0, Dm, Fm, De, and Fe are combinations of the original
coupling constants g, d, f, d0, f0, and hence are themselves
coupling constants. In particular, G0 is related to the SU(3)
exact symmetry; Dm and Fm account for the quark-mass-
difference breaking term; De and Fe for the EM one; φ is
the relative phase between the strong and the EM
amplitudes.
The mixed strong-EM amplitude is null for the decays

into neutral particles [2,7,8].
By considering an infinite series of excited vector

charmonia, with increasing masses Mψ , so that the mixed
strong-EM and strong amplitudes become functions ofM2

ψ ,
asymptotically, i.e., as M2

ψ diverges, the ratio

RðM2
ψ Þ ¼

Aggγ
BB̄ðM

2
ψÞ

Aggg
BB̄ðM

2
ψÞ

would tend to a real limit. The high-q2 trend of this ratio
can be also inferred by the perturbative QCD (pQCD) [9],
that provides the asymptotic behavior

RpQCDðq2Þ ∼
q2≫Λ2

QCD

−
4

5
QB

α
αSðq2Þ

; ð2Þ

where QB is the baryon electric charge in units of the
positron charge, α and αSðq2Þ are the fine structure constant
and the QCD running coupling constant, while ΛQCD is the
QCD scale and it is of the order of a few hundreds of MeV.
In the case of the J=ψ meson, it has been found [2] that the
scenario phenomenologically preferred by the whole avail-
able dataset on the decays J=ψ → BB̄ was that of having a
single value of R, not depending on the baryon electric
charge. Such a result can be interpreted as the effect
of a decay mechanism dominated by still non-pQCD
interactions.
As a consequence, we have considered a unique value of

the ratio R, as the starting hypothesis also in the case of the
ψð2SÞ meson. In other words, we started our analysis by
assuming that the QCD regime at the ψð2SÞ mass did

FIG. 1. Feynman diagrams of the strong, EM, and mixed
strong-EM contributions for the decay ψð2SÞ → BB̄.

TABLE I. Parametrizations of the BB̄ decay amplitudes.

BB̄ Aggg
BB̄ Aggγ

BB̄
Aγ

BB̄

pp̄ ðG0 −Dm þ FmÞeiφ Aggg
pp̄ R De þ Fe

nn̄ ðG0 −Dm þ FmÞeiφ 0 −2De

ΛΣ̄0þ c.c. 0 0
ffiffiffi
3

p
De

ΛΛ̄ ðG0 − 2DmÞeiφ 0 −De

ΣþΣ̄− ðG0 þ 2DmÞeiφ Aggg
ΣþΣ̄−R De þ Fe

Σ−Σ̄þ ðG0 þ 2DmÞeiφ Aggg
Σ−Σ̄þR De − Fe

Σ0Σ̄0 ðG0 þ 2DmÞeiφ 0 De

Ξ0Ξ̄0 ðG0 −Dm − FmÞeiφ 0 −2De

Ξ−Ξ̄þ ðG0 −Dm − FmÞeiφ Aggg
Ξ−Ξ̄þR De − Fe

AMPLITUDES SEPARATION AND STRONG-ELECTROMAGNETIC … PHYS. REV. D 103, 016005 (2021)
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remain nonperturbative, despite the fact that the ψð2SÞ
mass is larger than the that of the J=ψ .
In the same line of reasoning, in our model, a common

relative phase φ between strong and EM amplitudes has
been used for all the baryons of the flavor SU(3) octet.
Moreover, the strong and the mixed amplitudes are
assumed to be relatively real, this implies the reality
condition for the ratio R.

IV. THE ELECTROMAGNETIC COUPLINGS
AND THE χ 2 DEFINITION

Since the cross section of the annihilation eþe− → pp̄
has been measured with high accuracy by the BABAR
experiment [10] and recently by BESIII [11], its value at the
mass of the ψð2SÞ meson can be exploited as a further
constraint besides the BRs of its decays into baryon pairs.
This particular cross section value has been obtained by
fitting the BABAR and BESIII data and then by evaluating
the fit function at the desired energy, namely q2 ¼ M2

ψð2SÞ,
where q is four-momentum of the eþe− system in its own
center of mass frame. We used the fit function defined in
Ref. [11], i.e.,

σfitðq2Þ ¼
Apð1þ 2M2

p=q2Þ
ðq2Þ5ðln2 ðq2=Λ2

QCDÞ þ π2Þ2
; ð3Þ

where Mp is the proton mass. The analytic form of this
function has been obtained by considering for the electro-
magnetic form factors the power-law behavior predicted by
the pQCD [12,13]. It depends on the unique dimensional
free parameter Ap, to be determined by a standard χ2

minimization procedure, and includes the logarithmic QCD
correction with ΛQCD ¼ 0.35 GeV. Moreover, to avoid the
threshold energy regions, where the function of Eq. (3)
could fail in describing the cross section, only data at
q2 > ð2.8 GeVÞ2 have been considered in the minimiza-
tion procedure. Using the cross section value at the ψð2SÞ
mass, the EM BR for the decay ψð2SÞ → pp̄ is obtained
as [3]

BRγ
pp̄ ¼ BRμμ

σeþe−→pp̄ðM2
ψð2SÞÞ

σ0eþe−→μþμ−ðM
2
ψð2SÞÞ

¼ ð1.35% 0.14Þ × 10−6; ð4Þ

where BRμμ ¼ ð8.0% 0.8Þ × 10−6 [1] is the BR of the
decay ψð2SÞ → μþμ−, mediated by one-photon exchange,
and σ0eþe−→μþμ−ðq

2Þ represents the bare eþe− → μþμ− cross
section

σ0eþe−→μþμ−ðq
2Þ ¼ 4πα2

3q2
:

A further constraint is given by the well known BR for the
decay ψð2SÞ → ΛΣ̄0þ c.c., that, being purely EM under
the hypothesis of isospin conservation, determines univo-
cally the value of the EM coupling constant

De ¼ ð1.25% 0.07Þ × 10−4 GeV; ð5Þ

as has been discussed in Ref. [14].
The χ2 function has been defined by including all the

measured BRs, as well as the constraint from the eþe− →
pp̄ cross section, given in Eq. (4) and represented by the
symbol BB̄ ¼ pp̄γ ,

χ2ðξÞ ¼
X

BB̄∈Ω

!BRth
BB̄ − BRexp

BB̄

δBRexp
BB̄

"2

; ð6Þ

where ξ is the set of the six free parameters

ξ ¼ fG0; Dm; Fe; Fm; R;φg;

that are the coupling constants of the effective Lagrangian
density given in Eq. (1), and the sum runs over the seven
baryon pairs of the set

Ω ¼ fpp̄γ;Σ0Σ̄0;ΛΛ̄; pp̄; nn̄;ΣþΣ̄−;Ξ0Ξ̄0;Ξ−Ξ̄þg: ð7Þ

So that, the minimization has been performed with respect
to the six free parameters of the set ξ, by exploiting eight
experimental constraints, that are reported in Table II. The
obtained BRs, BRth

BB̄, with BB̄ ∈ Ω, are given by the
combinations of these parameters reported in Table I,
following the expression

BRBB̄ ¼ jp⃗j
8πM2

ψð2SÞΓψð2SÞ
jAggg

BB̄ þAggγ
BB̄ þAγ

BB̄j
2;

where p⃗ is the three-momentum of the baryon in the BB̄
center of mass frame, and Γψð2SÞ is the width of the
ψð2SÞ meson.

TABLE II. Branching ratios data from PDG [1]. The last row is
from Eq. (4), while the sixth one is from BESIII [15].

Decay process Branching ratio Error

ψð2SÞ → pp̄ ð2.94% 0.08Þ × 10−4 2.72%
ψð2SÞ → nn̄ ð3.06% 0.15Þ × 10−4 4.90%
ψð2SÞ → ΛΛ̄ ð3.81% 0.13Þ × 10−4 3.41%
ψð2SÞ → ΣþΣ̄− ð2.32% 0.12Þ × 10−4 5.17%
ψð2SÞ → Σ0Σ̄0 ð2.35% 0.09Þ × 10−4 3.83%
ψð2SÞ → Ξ0Ξ̄0 ð2.73% 0.13Þ × 10−4 4.76%
ψð2SÞ → Ξ−Ξ̄þ ð2.87% 0.11Þ × 10−4 3.83%
ψð2SÞ → γ → pp̄ ð1.35% 0.07Þ × 10−6 5.19%

FERROLI, MANGONI, PACETTI, and ZHU PHYS. REV. D 103, 016005 (2021)
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V. RESULTS AND DISCUSSION

The results of the χ2 minimization are summarized in
Table III, the errors have been obtained by means of a
Monte Carlo procedure. The results obtained by performing
the same analysis in the case of the J=ψ meson are reported
for comparison in Table IV. Instead, Table V reports input
and output values, together with their discrepancies in units
of standard deviations.1 Such a comparison is quite useful
to clearly identify the main contributions to the χ2, and
hence the channels whose dynamics seems to escape the
phenomenological description provided by the model. The
value that has been obtained for the BR of the decay
ψð2SÞ → Σ−Σ̄þ, which is still unobserved, represents a
prediction of the model.
The minimum of the χ2, normalized to the number of

degrees of freedom Ndof , is

χ2ðξbestÞ
Ndof

¼ 6.85; ð8Þ

where Ndof ¼ Nconst − Nparam ¼ 2, having eight con-
straints, Nconst ¼ 8, and six free parameters, Nparam ¼ 6.
The obtained value of the ratio R ¼ −0.059% 0.026, last

row of Table III, can be compared with that obtained for the
J=ψ meson, RJ=ψ ¼ −0.097% 0.021, last row of Table IV,
as well as with the asymptotic QCD prediction2 of
Eq. (2), RpQCD ∼ −0.024.

Meanwhile, the three contributions, purely strong, purely
EM and mixed strong-EM, to the total BR are listed in
Table VI. For a comparison, the corresponding values
obtained for the J=ψ meson are reported in Table VII.

A. Further hypothesis

The minimization procedure has provided a quite large
χ2 minimum value, see Eq. (8), in particular, it is larger than
the one obtained by performing the same analysis for the
J=ψ meson, whose value is shown in the first row of
Table IV.
By assuming the reliability of all the data, a so different

capability of the model to describe the dynamics under-
lying the decays into the same channels of the two similar

TABLE III. Best values of the parameters, for the ψð2SÞmeson,
describing the decay BB̄ amplitudes, see Table I, obtained by
minimizing the χ2 defined in Eq. (6), using the data reported in
Table II. The third row is from Eq. (5).

χ2=Ndof 6.85

G0 ð4.508% 0.052Þ × 10−3 GeV
De ð1.25% 0.07Þ × 10−4 GeV
Dm ð−2.30% 0.36Þ × 10−4 GeV
Fe ð1.65% 0.17Þ × 10−4 GeV
Fm ð−2.40% 0.60Þ × 10−4 GeV
φ 1.10% 0.54 ¼ ð63% 31Þ°
R ð−5.9% 2.6Þ × 10−2

TABLE IV. Best parameters obtained for the J=ψ meson [2].

χ2=Ndof 1.33

GJ=ψ
0 ð5.73511% 0.0059Þ × 10−3 GeV

DJ=ψ
e ð4.52% 0.19Þ × 10−4 GeV

DJ=ψ
m ð−3.74% 0.34Þ × 10−4 GeV

FJ=ψ
e ð7.91% 0.62Þ × 10−4 GeV

FJ=ψ
m ð2.42% 0.12Þ × 10−4 GeV

φJ=ψ 1.27% 0.14 ¼ ð73% 8Þ°
RJ=ψ ð−9.7% 2.1Þ × 10−2

TABLE V. Input and output values of the BRs and their
discrepancies, for the ψð2SÞ meson.

BB̄ BRexp
BB̄ × 104 BRBB̄ × 104 Discr. (σ)

pp̄ 2.94% 0.08 3.02% 0.26 0.294
nn̄ 3.06% 0.15 3.04% 0.19 0.083
ΛΛ̄ 3.81% 0.13 3.53% 0.15 1.411
ΣþΣ̄− 2.32% 0.12 2.19% 0.20 0.557
Σ0Σ̄0 2.35% 0.09 2.36% 0.12 0.067
Ξ0Ξ̄0 2.73% 0.13 3.05% 0.17 1.495
Ξ−Ξ̄þ 2.87% 0.11 2.79% 0.18 0.379
Σ−Σ̄þ & & & 2.01% 0.14 & & &
γ → pp̄ 0.0135% 0.0007 0.0133% 0.0007 ∼0

TABLE VI. Strong (second column), EM (third column) and
mixed (fourth column) BRs for the ψð2SÞ meson.

BB̄ BRggg
BB̄ × 104 BRγ

BB̄ × 106 BRggγ
BB̄ × 106

pp̄ 3.20% 0.12 1.34% 0.17 1.3% 1.0
nn̄ 3.20% 0.12 0.99% 0.11 0
ΛΛ̄ 3.61% 0.13 0.229% 0.026 0
ΣþΣ̄− 2.30% 0.10 1.19% 0.15 0.94% 0.73
Σ−Σ̄þ 2.29% 0.10 0.028% 0.022 0.94% 0.73
Σ0Σ̄0 2.30% 0.10 0.219% 0.024 0
Ξ0Ξ̄0 3.19% 0.11 0.807% 0.089 0
Ξ−Ξ̄þ 3.17% 0.11 0.026% 0.020 1.28% 0.98

1As usually we define the discrepancy between two quantities
with given errors x% σx and y% σy as

DiscrðσÞ ¼ jx − yj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x þ σ2y

q
:

2This value has been obtained by using Eq. (2) with
αSðM2

J=ψ Þ ¼ jαpQCDs ð−M2
J=ψ Þj, where αpQCDs ðQ2Þ is given in

Eq. (9) of Ref. [16] with the higher order coefficients β2 and
β3 obtained in the MS renormalization scheme and
ΛQCD ¼ 0.35 GeV.
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vector charmonia, the leading and the first excited states,
J=ψ and ψð2SÞ, could be ascribed to the presence of some
contribution, negligible at the J=ψ mass, but having an
effect at the ψð2SÞ mass, that is not included in the original
Lagrangian density of Eq. (1).
To verify the eventuality that the missing contribution

concerned a single BB̄ decay channel, we minimize

χ2=B ¼
X

BB̄∈ΩnfBB̄g

!
BRth

BB̄ − BRexp
BB̄

δBRexp
BB̄

"2

; ð9Þ

that includes all the experimental constraint with the
exception of the BB̄ one, and hence it can be seen as a
discrete function of the channel BB̄, which varies in set Ω
given in Eq. (7). The behavior of χ2=B versus the decay

channel BB̄, is shown, in logarithmic scale, in Fig. 2.
We observe that at BB̄ ¼ ΛΛ̄, i.e., by excluding the

datum on the BR of the ΛΛ̄ final state, the discrete function
χ2=B reaches its minimum value, which is one order of

magnitude smaller than the value of Eq. (8), obtained by
taking into account all the available data.
The simplest explanation for such a result is that there

should be some particular mechanism that enhances the

affinity between the ψð2SÞ and the ΛΛ̄ final state, by
favoring the decay ψð2SÞ → ΛΛ̄ with respect to the
J=ψ → ΛΛ̄, that is not considered in our model.
Unfortunately, it is quite difficult envisaging the nature
of the eventual missing piece of the Lagrangian density, by
only relying on its incapability to describe the decay into
ΛΛ̄, once all the other have been considered.
In the light of that, the ΛΛ̄ channel has been excluded

from the set of the experimental constraints, and hence the
minimization procedure has been based on the function χ2=Λ,

obtained from Eq. (9) with BB̄ ¼ ΛΛ̄. The coupling
constants, the relative phase φ, and the ratio R obtained
in this case are reported in Table VIII.
We notice that, even though the χ2=B has three minima of

apparently the same order, i.e., besides the one of the ΛΛ̄
channel, there are those corresponding to pp̄ and Ξ0Ξ̄0,
they are crucially different. While χ2=Λ is lower than one, χ2=Ξ
and χ2=p remain larger than two. These values, even on the

light of the only one degree of freedom, disfavor the
hypotheses of excluding the corresponding BR data.
A difference very interesting and meaningful, as we will

see in the following discussion, among the two sets of
parameters that minimize the complete χ2 of Eq. (6),
reported in Table III, and χ2=Λ, is the outcome for the ratio

R, that passes from the negative value R ¼ ð−5.9$ 2.6Þ ×
10−2 to a positive value but compatible with zero
R ¼ ð2.3$ 3.4Þ × 10−2. We interpreted this result as a
phenomenological manifestation of the tendency toward a
perturbative regime of the underlying QCD dynamics.
Indeed, in this case, the ratio Rwould acquire a dependence
on the baryon electric charge QB, as shown in Eq. (2).
This is a quite natural consequence of the direct

computation of the ggγ amplitude, whose Feynman dia-
gram is shown in the lower panel of Fig. 1, by summing up
the three possible contributions where the photon couples
to each of the three valence-quark lines. Since each

TABLE VII. Strong (second column), EM (third column) and
mixed (fourth column) BRs for the J=ψ meson [2].

BB̄ BRggg
BB̄ × 103 BRγ

BB̄ × 105 BRggγ
BB̄ × 105

pp̄ 2.220$ 0.085 8.52$ 0.89 2.19$ 0.93
nn̄ 2.220$ 0.085 4.50$ 0.38 0
ΛΛ̄ 2.020$ 0.042 0.981$ 0.083 0
ΣþΣ̄− 1.100$ 0.030 6.86$ 0.72 1.08$ 0.46
Σ−Σ̄þ 1.090$ 0.030 0.52$ 0.20 1.07$ 0.46
Σ0Σ̄0 1.100$ 0.030 0.902$ 0.076 0
Ξ0Ξ̄0 1.260$ 0.053 2.99$ 0.25 0
Ξ−Ξ̄þ 1.240$ 0.052 0.43$ 0.16 1.22$ 0.52

FIG. 2. Comparison of χ2=B values obtainedwith theminimization
procedure of Eq. (6), by using the data reported in Table II,
but excluding, each time, an experimental datum. The channel of
the excluded datum is reported on the abscissa. For each case
Ndof ¼ 1.

TABLE VIII. Best values of the parameters, for the ψð2SÞ
meson, describing the decay BB̄ amplitudes, see Table I, obtained
by minimizing the χ2 defined in Eq. (6), using the data reported in
Table II with the exclusion of the ΛΛ̄ final state. The third row is
from Eq. (5).

χ2=Λ=Ndof 0.83

G0 ð4.331$ 0.071Þ × 10−3 GeV
De ð1.25$ 0.07Þ × 10−4 GeV
Dm ð−1.11$ 0.44Þ × 10−4 GeV
Fe ð1.66$ 0.17Þ × 10−4 GeV
Fm ð−1.35$ 0.67Þ × 10−4 GeV
φ 1.97$ 0.53 ¼ ð111$ 30Þ°
R ð2.3$ 3.4Þ × 10−2
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coupling is weighted by the quark electric charge, the total
contribution turns out to be proportional to the baryon
electric charge.
The reason why the agreement with zero of a unique

value of R can be interpreted as a phenomenological
requirement of pQCD restoration relies on the assumption
of an almost linear response of the model to the exper-
imental constraints. In the sense that, if we force two free
parameters, supposed to be opposite, to have instead a
common value, the minimization procedure would give for
such a parameter a value compatible with their mean and
hence close to zero.
In light of that, we have considered the free parameter R

as having the same modulus for all decay channels but with
sign linked to that of the baryon electric charge, in
particular, as predicted by pQCD, R turns out to be negative
for positive charges, see Eq. (2).
In more detail, the model has been modified by consid-

ering two opposite values for the ratio R, namely: R ¼ −jRj
for p and Σþ; R ¼ jRj for Σ− and Ξ−, actually in this case
only the latter did affect the minimization procedure since
there is no data on the BR of the decay ψð2SÞ → Σ−Σ̄þ.
The lower value for the minimum of χ2=Λ, decreasing from

0.83 with a single-sign R down to 0.17 with a double-sign
R, see Tables VIII and IX, and mainly the good agreement
with the pQCD expectation from Eq. (2)3

RpQCDðM2
ψð2SÞÞ ≃ −0.025; ð10Þ

did demonstrate the goodness of this hypothesis, even
though the best value of the ratio R is still in agreement with
zero, meaning that the ggγ contribution in the ψð2SÞ case
plays a role not so important as it does for the J=ψ .
The differences among the best values of the parameters

obtained including the ΛΛ̄ BR, with a single-sign R, and
those without the ΛΛ̄ constraint, but considering a double-
sign, QCD-inspired ratio R, reported in Tables III and IX,

respectively, are mainly related to the parameters Dm and
Fm, responsible for the SU(3) symmetry breaking due to
the ðu; dÞ − s quark mass difference, whose moduli, in the
second case are reduced by a factor of almost two with
respect to the first case. This is not unexpected, in fact, in
the framework of pQCD, a reduction of such effects, i.e., a
tendency toward the flavor SU(3)-symmetry restoration
appears quite natural.

VI. CONCLUSIONS

The ψð2SÞ decays into spin-1=2 baryons belonging to
the SU(3) octet have been studied in the framework of the
same phenomenological model used for the J=ψ meson [2].
Despite the natural affinity between the two lightest vector
charmonia, the model seems to fail in providing a complete
description of the decay mechanisms in the case of the
ψð2SÞ. In particular, the ΛΛ̄ decay channel has a BR that
exceeds the value that the model can provide, by high-
lighting the eventual, or, at least, phenomenologically
required, presence of an additional contribution especially
effective in this peculiar decay channel.
The investigation of a possible Λ-enhancing mechanism

goes beyond the scope of this work so that, we only limited
ourselves to notice such a phenomenon and act accordingly
by excluding the corresponding experimental constraint
from the analysis. It follows that the main results of this
study have been those obtained by do not considering the
ΛΛ̄ channel.
The main difference between the findings of the studies

on the J=ψ and ψð2SÞ decays into baryon-antibaryon pairs
has consisted in the role played by the couplings Dm and
Fm, see Tables III and IV, that account for the SU(3)
symmetry breaking due to quark mass differences.
In particular, these parameters have the same sign in the

case of theψð2SÞ, while they have a different sign in the case
of the J=ψ . Similar differences, due to the SU(3) breaking
terms, have also been observed by studying the angular
distributions of the decays into the Σ and the peculiar Λ
channel [4,5]. One of the causes of such different behaviors
could be theΛ-enhancing mechanism previously discussed.
Unfortunately, the effective Lagrangian model, used here,
provides coupling constants that, in the language of “strong
electric andmagnetic form factors”, gB;ψE;M [4,5], for the decay
of the charmonium ψ in to the BB̄ baryon pair, could be
considered as a unique effective coupling constant, whose
modulus squared is given by the combination: jgB;ψ j2 ¼
jgB;ψM j2 þ 2M2

Bjg
B;ψ
E j2=M2

ψð2SÞ. This means that the informa-
tion on the angular distributions cannot easily be used.
Nevertheless, we are exploring the possibility of exploit-

ing the value of the polarization parameter

αB;ψ ¼
jgB;ψM j2 − 4M2

Bjg
B;ψ
E j2=M2

ψð2SÞ

jgB;ψM j2 þ 4M2
Bjg

B;ψ
E j2=M2

ψð2SÞ

;

TABLE IX. Best values of the parameters, for the ψð2SÞ
meson, describing the decay BB̄ amplitudes, see Table I ( % with
opposite R for the negative final state baryons), from the χ2=Λ
minimization and considering a double-sign ratio R. The third
row is from Eq. (5).

χ2=Λ=Ndof 0.17

G0 ð4.374& 0.039Þ × 10−3 GeV
De ð1.25& 0.07Þ × 10−4 GeV
Dm ð−1.35& 0.28Þ × 10−4 GeV
Fe ð1.67& 0.17Þ × 10−4 GeV
Fm ð−1.17& 0.69Þ × 10−4 GeV
φ 1.52& 0.25 ¼ ð87& 15Þ°
R% ð−2.2& 2.0Þ × 10−2

3See footnote 2.
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obtained by studying the BB̄ angular distribution in the
process eþe− → ψ → BB̄, in combination with the modu-
lus squared of the corresponding effective coupling con-
stant gB;ψ , to achieve more information on the strong form
factors and hence on the dynamics of the charmonium
decays in to baryon pairs [17].
Even the couplings accounting for the EM SU(3)

symmetry breaking, De and Fe, in the case of ψð2SÞ are
smaller (compared to the dominant contribution G0) than
those of the J=ψ .
The BRs obtained by the χ2=Λ minimization procedure and

considering a double-sign ratio R, whose single contribu-
tions are reported in Table X, are in agreement, at most
within 0.16 sigmas, apart from that of the ΛΛ̄ channel
excluded from the χ2 function, with the corresponding
input values, as reported in Table XI and shown in Fig. 3.
The BR of the unobserved decay ψð2SÞ → Σ−Σ̄þ, i.e., from
Table XI, BRΣ−Σ̄þ ¼ ð2.46% 0.13Þ × 10−4 represents a
prediction of the model. Moreover, the strong-EM relative
phase φ ¼ ð87% 15Þ° is in agreement with the phase of the
J=ψ , φJ=ψ ¼ ð73% 8Þ°.

In the case of the ψð2SÞ, the ratio R became a key
parameter, in fact, it can be used to reveal the QCD regime.
By studying its values obtained as a consequence of
different hypotheses, primarily the exclusion of the ΛΛ̄
channel from the set of the experimental constraints guided
us toward a better understanding of the dynamics of these
decays. The really interesting conclusion is that, already at
ψð2SÞ mass, the QCD regime is perturbative. This means
that the expression of the ratio R is known, as given in
Eq. (2), it is proportional to the ratio between the fine-
structure constant and the strong running coupling con-
stant. Moreover, its sign varies accordingly to that of the
electric charge of the baryon, or better, by including also
the case of the null value for neutral baryons, we can say
that it is proportional to baryon electric charge. The
hypothesis of perturbative regime of the QCD is supported,
not only by the goodness of the description in terms of a
charge-dependent ratio R, but mainly by the numerical
value of this parameter, reported in Table IX, that, despite
the large error, has a central value in good agreement with
the pQCD expectation given in Eq. (10).
As already done in the case of the J=ψ meson, for the

first time, the strong, the EM and the mixed strong-EM
contributions to the total BR of the decays ψð2SÞ → BB̄
have been separated. The obtained values reported in
Table X can be compared to those of the J=ψ meson in
Table VII.
It is evident that the purely strong contribution to the

total BR is larger in the case of the J=ψ with respect to the
ψð2SÞ. This behavior is compatible with the decreasing
trend of the QCD running coupling constant as q2

increases, from the J=ψ to the ψð2SÞ mass.
The EM contributions for the ψð2SÞ meson, again from

Table X, follow a hierarchy with decreasing values of
orders of magnitude. In fact for the baryon pairs pp̄, nn̄,
ΣþΣ̄−, and Ξ0Ξ̄0 we have BRγ ∼ 10−6, for Σ0Σ̄0 and ΛΛ̄ we
have BRγ ∼ 10−7 and, finally, for the two pairs Σ−Σ̄þ and
Ξ−Ξ̄þ we have BRγ ∼ 10−8. A similar trend, but with one
order of magnitude more, can be seen also in the case of the
J=ψ meson, see Table VII.

TABLE XI. Input and output values of the BRs and their
discrepancies, for the ψð2SÞ meson, from the χ2=Λ minimization

and considering a double-sign ratio R.

BB̄ BRexp
BB̄ × 104 BRBB̄ × 104 Discr. (σ)

pp̄ 2.94% 0.08 2.95% 0.20 0.046
nn̄ 3.06% 0.15 3.04% 0.15 0.094
ΛΛ̄ 3.81% 0.13 3.14% 0.10 4.1
ΣþΣ̄− 2.32% 0.12 2.29% 0.15 0.16
Σ−Σ̄þ & & & 2.46% 0.13 & & &
Σ0Σ̄0 2.35% 0.09 2.37% 0.09 0.14
Ξ0Ξ̄0 2.73% 0.13 2.75% 0.12 0.11
Ξ−Ξ̄þ 2.87% 0.11 2.86% 0.16 0.052

TABLE X. Strong (second column), EM (third column), and
mixed (fourth column) BRs for the ψð2SÞ meson, from the χ2=Λ
minimization and by considering a double-sign ratio R.

BB̄ BRggg
BB̄ × 104 BRγ

BB̄ × 106 BRggγ
BB̄ × 106

pp̄ 3.05% 0.11 1.36% 0.17 0.30% 0.37
nn̄ 3.05% 0.11 0.99% 0.11 0
ΛΛ̄ 3.150% 0.094 0.229% 0.025 0
ΣþΣ̄− 2.36% 0.08 1.20% 0.15 0.23% 0.29
Σ−Σ̄þ 2.35% 0.08 0.029% 0.022 0.23% 0.28
Σ0Σ̄0 2.36% 0.08 0.219% 0.024 0
Ξ0Ξ̄0 2.75% 0.10 0.806% 0.089 0
Ξ−Ξ̄þ 2.74% 0.10 0.027% 0.020 0.27% 0.34

FIG. 3. Comparison of BRs (experimental input vs model
predictions). The red points are from Table II, while the black
ones, from Table XI, are the corresponding values obtained as
outcomes of the minimization of χ2=Λ and considering a double-

sign ratio R. The errors are obtained by means of a Monte Carlo
procedure.
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We use the purely EM BR, depending only on the
parameters De and Fe, to calculate the Born nonresonant
cross section of the annihilation processes eþe− → BB̄ at

the ψð2SÞmass. The results are reported in Table XII. They
appear independent on the ΛΛ̄ BR, indeed, as can be seen
in Tables III and VIII, the values of De and Fe, obtained
including and not including, respectively, the datum on the
ΛΛ̄ BR, are almost the same.
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eþe− → BB̄ Cross section at the q2 ¼ M2
ψð2SÞ

eþe− → Σ0Σ̄0 ð0.175% 0.024Þ pb
eþe− → ΛΛ̄ ð0.183% 0.024Þ pb
eþe− → ðΛΣ̄0 þ c:c:Þ ð0.538% 0.073Þ pb
eþe− → pp̄ ð1.10% 0.16Þ pb
eþe− → nn̄ ð0.79% 0.11Þ pb
eþe− → ΣþΣ̄− ð0.97% 0.14Þ pb
eþe− → Σ−Σ̄þ ð0.024% 0.018Þ pb
eþe− → Ξ0Ξ̄0 ð0.645% 0.086Þ pb
eþe− → Ξ−Ξ̄þ ð0.022% 0.017Þ pb
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is  the modulus of the strong amplitude

𝒜ggg
ℬℬ

S

  
is  the modulus of the electromagnetic amplitude

𝒜γ
ℬℬ

E
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About the relative sign of the continuum and the resonant 
amplitudes in a process e+e− → ℬℬ

The Feynman amplitude 

−iℳ = [v(k2)(ieγμ) u(k1)]
−igμν

q2 [u(p1)(ieΓν(q)) v(p2)]
Taking away the imaginary unit  

ℳ = − e2[v(k2)γμu(k1)]
gμν

q2 [u(p1)Γν(q)v(p2)]
The non-constant matrix-vector  depends on two independent  

Lorentz-scalar functions  and  as 

Γμ(q)
ℱ1(q2) ℱ2(q2)

Γμ(q) = γμℱ1(q2) +
iσμνqν

2M
ℱ2(q2)

In the case of the continuum, i.e., ,  

 and  are the Dirac and Pauli form factors 

e+e− → γ* → ℬℬ
ℱ1(q2) ℱ2(q2)

ℱ𝖼𝗈𝗇𝗍
1,2 (q2) = F1,2(q2)
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…It continues

If a resonance  is produced and then it decays in  the functions  

contain its propagator and the coupling constants to the photon,  and to the 

 final state, ,    

ψ ℬℬ ℱ1,2(q2)
Gγ

1,2

ℬℬ Gℬℬ
1,2

ℱ𝗋𝖾𝗌
1,2(q

2) =
−iGγ*

1,2G
ℬℬ
1,2

q2 − M2
ψ + iΓψ Mψ

For the process  e+e− → γ* → ψ → γ* → ℬℬ

ℱ𝗋𝖾𝗌−𝖤𝖬
1,2 (q2) =

−i Gγ
1,2

2
F1,2(q2)

q2 − M2
ψ + iΓψ Mψ

−i
q2

Considering the three contributions 

ℱ1,2(q2) = F1,2(q2)[1 +
−iGγ*

1,2(Gℬℬ
1,2 /F1,2(q2) − iGγ

1,2/q2)
q2 − M2

ψ + iΓψ Mψ ]
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…It still continues

By setting the Dirac and Pauli form factors at the  mass ψ

ℱ1,2(M2
ψ) = F1,2(M2

ψ)[1 +
Aℬℬ

1,2 eiϕ1,2 − Aγ
1,2

q2 − M2
ψ + iΓψ Mψ ]

were  

 ,    

are the moduli of the electromagnetic and strong amplitudes, and 

 

are their phases, assuming real the electromagnetic amplitudes. 

Aγ
1,2 ≡

Gγ
j

2

M2
ψ

Aℬℬ
1,2 ≡

−iGγ*
1,2G

ℬℬ
1,2

F1,2(M2
ψ)

=
Gγ

1,2 Gℬℬ
j

F1,2(M2
ψ)

ϕ1,2 = arg
−iGγ*

1,2G
ℬℬ
1,2

F1,2(M2
ψ)
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…It still continues to continue

By considering an effective unique amplitude the sum  

of the three contributions can be factorized as 

 

where  is the amplitude of the same process in  

case of a contact, i.e., current-current interaction.

ℳ = ℳ𝖼𝗈𝗇𝗍𝖺𝖼𝗍[1 +
Aℬℬeiϕ − Aγ

q2 − M2
ψ + iΓψMψ ]

ℳ𝖼𝗈𝗇𝗍𝖺𝖼𝗍


