Ongoing Ph.D. Cycles
- 40° Cycle: 2024-2027
- 39° Cycle: 2023-2026
- 38° Cycle: 2022-2025
- 37° Cycle: 2021-2024
- 36° Cycle: 2020-2023
Planetary geology
This research theme focuses on deciphering the composition of Extraterrestrial Bodies (EB) through the quantitative comparison of their spectral features with spectral data of rocks of known compositions. The aim is to develop new research lines, through fundamental research activities, using a surgical approach integrating the experimental production of rock analogues, their spectral characterization, high-resolution data analysis and modelling of spectral data. Researches will be carried out using the already existing experimental and analytical facilities complemented with the new equipment acquired using the funding deriving from the Progetto di Eccellenza Dipartimentale 2023-2027.
Data Science Applications and Modelling in Petrology and Volcanology
Data Science is becoming more and more pervasive in any field of research, including Earth Sciences. By using advanced exploratory data analysis techniques, new modeling tools, machine learning, and big data, researchers can gain deeper insights into the evolution of magmatic systems, magma storage regions, subsequent magma migration events within the plumbing system, and eruptive dynamics.
We accept proposals that aim at developing new data sciences applications in petrology and volcanology to better probe the evolution of volcanic plumbing systems and pre-eruptive dynamics.
Detection of Greenhouse Gases through Earth Observation
The main objective of this proposal is to utilize multispectral satellite data from Sentinel 2 and Sentinel 3, along with data obtainable upon request of doctoral opening via PRISMA, to detect and monitor methane and other greenhouse gases in the Earth's atmosphere. Additionally, we intend to explore other potential sources of data and conduct analysis to infer the presence of methane collaterally.
This proposal aims to fully harness the capabilities of multispectral satellite data to address one of the most pressing challenges of our time: climate change. Through a combination of advanced technologies and innovative analysis, we can gain a clearer and more detailed view of greenhouse gas emissions, enabling targeted interventions and informed decisions for the protection of our planet.
From industrial wastes to resources: decarbonization and circular economy.
The ecological transition is a necessary path towards sustainable development and one of the goals of the United Nations' 2030 Agenda. The concepts of decarbonization and circular economy are among the key points to ensure this. The present research proposal is dedicated to the development of strategies to improve the sustainability of industrial processes using geomaterials. The fine-tuned technologies will be optimized along the path of (i) decarbonization of production processes, (ii) ex-situ carbon storage and (iii) reuse of waste geomaterials that will reach the status of end-of-waste and become second-generation geomaterials. The characterization and optimization of waste feedstocks and products will be carried out using both in-house instrumentations, national/international facilities and collaborations with public and private laboratories/industries.
Geomorphological mapping on emerged and submerged lacustrine features and on alluvial landforms in a semi-natural environment
The research theme focuses on the study, recognition and mapping of lacustrine features both emerged and submerged and of drainage networks connected to them and subject to strong anthropization. The study case is the Trasimeno Lake (Umbria, central Italy) and the fluvial network with the adductors and emissaries connected to it.
The results will be used to update the legend of the Italian Geomorphological Map at a scale of 1:50.000 and the relative Geomorphological Database.
Geophysical characterization of Quaternary extensional basins in Umbria through microtremors: a contribution to seismic hazard assessment.
The Quaternary basins in Umbria (e.g., Gubbio, Colfiorito and Norcia) have been historically damaged by medium to high-intensity earthquakes. Several studies have attempted to address the stratigraphic and structural complexities that complicate both geological modeling at various scales as well as the determination of site response. Unfortunately, an accurate definition of the geometry of the basins and the hierarchy of the bordering active faults are still open questions within the scientific community.
During the study, that will be carried out in collaboration with national and international institutions, new and extensive passive seismic data will be acquired on selected sites in Umbria. Single-station measurements, as well as 2D seismic arrays will be used, and the data analyzed and interpreted together with already available geophysical, geological, and satellite data. The study goal will be the detailing the 3D basins architecture of the infilling Quaternary sediments. This work will be crucial for contributing to a better definition of seismic hazard and to reveal local ground motion amplifications.
Implement forecasting models for the management of groundwater resources of carbonate aquifers in the context of climatic variations
The project aims to design a comprehensive workflow to analyze and predict spring discharges and their dependence on climate change. A stochastic–analytical modelling approach combined with lumped model will be applied to springs fed by carbonate aquifers with different degrees of karstification and fracturing and different geologic and structural setting. These springs are exploited for drinking water supply, and the discharges have been continuously monitored since at least 30 years. The spring discharge time series will be predicted based on forecasted rainfall/temperature time series derived from regional climate model projections. Understanding springs’ behavior can guide management bodies to adopt correct practices to prevent the negative effects of droughts and to evaluate better the vulnerability of groundwater and the sustainability of ecosystems dependent on it.
Integrated platform/basin biostratigraphy (foraminifers and palynomorphs) across the Early Cretaceous of Turkey
This PhD project examines the changes in plant diversity and abundance during the Cretaceous (Aptian to Turonian), focusing on microfloristic and foraminifera analyses of key sections in the Umbria-Marche Basin and Turkey. The Cretaceous period was generally characterized by a warm, super-greenhouse climate with weak latitudinal temperature gradients and no ice sheets, although intermittent cooling periods were identified. The study aims to link vegetational changes to global environmental shifts, such as oceanic anoxic events triggered by massive volcanic activities. These events caused major disturbances in the carbon cycle and climate. Collaboration with national and international institutes will help improve temporal correlation and apply interdisciplinary approaches.
Sedimentary record of Quaternary basins in Central Italy: a key for understanding active tectonic structures and environmental changes
The Quaternary sedimentary successions are fundamental chronological tools to identify the spatial-temporal evolution of active tectonics, to unravel the recent faults activity rates. In addition, they represent a unique paleo-environmental record of climatic changes through time. The project will be developed by integrating surface data, subsurface data (direct and indirect) and both absolute and relative dating taking as case study the sedimentary record of some basins in central Italy with the aim of characterizing the basin-bounding faults activity rates and the climatic and paleo-environmental conditions.
The paleontological record of Olduvai Gorge (Tanzania): a treasure trove of paleoenvironmental information on the eastern African Quaternary
Olduvai Gorge is one of the most important paleontological sites in Africa. The sedimentary sequence cropping out in the Gorge spans the last 2 million years, thus being a treasure trove of data on the Quaternary biological and landscape evolution, including some crucial phases of human evolution. Although known since the early 1900s, the Olduvai paleontological record is far from being understood in its entirety. Some of the biases that afflict this outstanding cultural heritage are (1) the lack of detailed systematic analysis of most remains; (2) the scattering of the historical collections across several museums (National Museum of Tanzania, Natural History Museum London, Museum für Naturkunde Berlin, etc.); (3) the lack of integration between historical and recent collections. The present project aims to fill some of these knowledge gaps with a review of the Olduvai record, associated with its integration with new discoveries made in recent years by the THOR (Tanzania Human Origins Research) program. The review will also benefit from the THOR's research on the re-evaluation of the Olduvai stratigraphic sequence, with the aim of providing updated and more reliable paleoenvironmental reconstructions.
The PhD in “Earth System and Global Change” is focused on issues concerning climate change, planetology, strategies for mitigating natural and/or anthropogenic risks, the demand for natural resources, the valorization of the geological, paleontological and landscape heritage, and environmental sustainability. This mission is also pursued by offering young generations high-level research training opportunities, both nationally and internationally. The activity of the course and its training program rest above all on the experience and qualifications of the members of the Board, whose research has constantly ensured the attraction of funds assigned on a competitive basis, both of a national (e.g., PRIN, PNRA PROGETTO DI ECCELLENZA DIPARTIMENTALE 2023-2027) and international (e.g., ITN, ERC) scales. PhD students can also benefit from the numerous collaborations with qualified international academic and research institutions, with Italian public research institutes (e.g., CNR, INGV, OGS ASI) and with other public (e.g., ENEA, ISPRA, ARPA-Umbria, SABAP-Umbria, etc.) and private (e.g., ENI, ENEL, COLACEM, TIM, etc.) partners.
The PhD in “Earth System and Global Change” trains experts with a high technical-scientific profile, capable of entering various occupational fields, both in the public and private sectors. The up-to-date and innovative skills, characteristic of this doctoral course, based on a distinctly interdisciplinary approach, will further increase the opportunities for the placement of new doctors in various fields, such as: national and international academic and research institutions working on Earth Sciences; government agencies that require researchers capable of supporting management decisions and policies to address some of the major environmental problems that modern society is facing today, also with a view to increasing interaction between operators and local communities (social licenses); public bodies and companies involved in (1) land management and geological risk mitigation, (2) sourcing, modeling and management of georesources, (3) sustainable production of mineral and energy resources, and (4) study, protection and enhancement of landscape and cultural heritage..
The training activity of the PhD has its core in the research project carried out by the individual doctoral students, who will be strongly encouraged to personalize their training program, in order to achieve the best possible training in their elective research sector.
To better support the construction of this training program, the PhD makes available the best teaching/research resources available within the Board and in the universities and international research centers with which the Board maintains research collaborations, also by planning and activating a series of educational activities (courses, schools, and seminars).
Every year, the PhD Board approves a training program made up of courses, schools and seminars.
The courses are specifically designed for the PhD in "Earth System and Global Changes" and are preferentially aimed at PhD students. They are held by members of the PhD Board and/or national and international researchers with whom the Board members have scientific relations. Upon request, based on the places available, the courses can be attended by students from other Italian and foreign PhD programs. The courses generally provide for practical activities alongside the theoretical ones. The courses include a final test. Schools are open to both PhD students and other participants (e.g., undergraduates or other). Participation in courses and schools is optional (with the exception of the course reported below), in relation, for example, to the link between the topic of the course/school and that of the project of the single PhD student.
The seminars are organized in number of 6-8 per cycle and are held by qualified Italian and foreign researchers, on issues relating to those of the PhD. The seminars usually take place in the months of January-April. PhD students are required to follow at least 75% of the seminars for the acquisition of 3 CFU.
As part of the 30 mandatory CFUs that each PhD student must acquire, 9 CFUs are dedicated to a multidisciplinary course on the themes of the PhD (Earth System and Global Changes). Participation in this course is mandatory for all PhD students (at the first or second year).
A stay in one or more foreign structures (university, research centers or other high qualification institutions) of at least 6 months (even non-continuous) is strongly recommended for all PhD students (mandatory for some types of scholarships; e.g., PNRR, PON).
The PhD promotes participation in courses on transversal topics organized by other PhD programs of the University of Perugia or other Italian and foreign universities, especially if of a multidisciplinary, transdisciplinary and interdisciplinary nature.
PhD students have the opportunity to participate in foreign language courses at the University Language Center (CLA) with a 6-month or annual duration. The language courses can be carried out, of choice of the student, over the three years, but the CFU achieved do not contribute to the achievement of the 30 CFUs that the PhD students must compulsorily obtain with the training program. The periods of training abroad, strongly recommended for all PhD students, contribute to the strengthening of language skills.