Laboratori di ricerca - area FIS
La Camera Pulita è un laboratorio della Sezione di Perugia dell' INFN, sviluppato in collaborazione con il Dipartimento.
È composta da due unità adiacenti: la camera pulita "A" e la camera pulita "B", collegate fra di loro tramite una porta automatica. Questa configurazione permette di operare alle due unità sia in maniera indipendente (diverse impostazioni di temperatura ed umidità), sia come un ambiente unico, a seconda delle esigenze specifiche.
CAMERA PULITA "A" CAMERA PULITA "B"
Classe di purezza: ISO 4 (FED 209D M 5,5) ISO 2 (FED 209D M 3,5)
Intervallo di temperatura: ± 1°C ± 1°C
Intervallo di umidità: ± 5% ± 5%
Flusso laminare: M 3,5 n° 4-dim 120x60 cm M 3,5 n° 1-dim 200x60 cm
CleanRoom foto1 CleanRoom foto2
Attrezzature principali
Bilancia
Bonding Delvotec
Camalot
Cappa
Gantry
Forno
Kulicke Soffa
Ladder
Microscopi
Mitutoyo BHN506
Mitutoyo 776
PA 200
Sigillatrice vuoto
Silicon Survey
Stazione test Kapton
Strumenti Keithley
Vasca ultrasuoni
Documentazione (Norme generali)
Autorizzazione 675.96 Vers.1
Dichiarazione Sicurezza
Norme comportamentali Camera Bianca o Pulita
Norme di sicurezza e comportamentali Camera Bianca
Note
L'esperienza per la progettazione, realizzazione e gestione della Camera Pulita dell' INFN presso il Dipartimento di Fisica è stata fondamentale per la realizzazione del Laboratorio SERMS di Terni.
Il laboratorio SERMS nasce alla fine degli anni ’90 come facility per l’assemblaggio e qualifica spaziale di strumentazione destinata ad operare nello spazio. La struttura è condivisa sin dai suoi inizi tra Università di Perugia ed Istituto Nazionale di Fisica Nucleare. Un accordo di ricerca congiunta vede partecipare anche la SERMS s.r.l., società privata nata come spinoff dell’università di Perugia ed attualmente parte dell’Umbra Group.
Il laboratorio si compone di due diverse sezioni dedicate ad attività complementari e situate in diversi edifici.
La prima sezione, il SERMS-OALAB, è una camera pulita ISO7 con superficie di ≈ 30 m2 e dedicata a est ed assemblaggi su dispositivi a semiconduttore.
Grazie al progetto di Dipartimento di Eccellenza, è previsto entro il 2024 il raddoppio della superficie di camera pulita per poter accogliere l’assemblaggio di strumentazione di grandi dimensioni.
Figura 1- SERMS-OALAB: Rivelatori al silicio assemblati su una porzione della struttura meccanica del nuovo piano di tracciatore dell’esperimento AMS-02
La seconda sezione, il SERMS-Spazio, è dedicata all’integrazione e test di strumentazione per attività spaziali. Si sviluppa su una superficie di ≈ 500 m2 di un ex capannone industriale, ed in questo ambiente sono state ricavate delle aree specifiche per l’integrazione di strumentazione, la sua qualifica ambientale e meccanica.
Nell’area integrazione e test ambientali sono presenti due camere pulite (classe ISO7 ed ISO8) su cui si apre un simulatore spaziale cilindrico, di 2 m di diametro x 2 m di lunghezza, con cui effettuare test termici in condizioni di vuoto. Test termici a pressione ambiente sono possibili grazie a due camere climatiche a basso ed altro gradiente, e test di depressurizzazione possono essere effettuati in un simulatore aeronautico.
Figura 2 Corpo del Simulatore Spaziale all'interno della camera pulita.
Figura 3 Il piano assemblato al SERMS-OALAB ricoperto di uno strato di isolamento e pronto per essere testato nel simulatore spaziale
Nell’area dei test meccanici, due shaker elettrodinamici sono accoppiati ad una tavola vibrante (2x2 m2) con base stabilizzante integrata nel terreno e permettono di simulare le vibrazioni al lancio di payload spaziali. L’effetto dello shock al lancio è anche simulabile grazie ad una macchina di pyroshock.
Figura 4 Visione d'insieme del laboratorio, sulla sinistra in basso le camere pulite ed in alto spazio uffici. Nella zona centrale uno shaker elettrodinamico
Figura 5 Test di vibrazione del tracciatore con in primo piano il corpo dello shaker.
Il laboratorio di ricerca NA62/LHCb è dedicato allo sviluppo e test di strumentazione per i rivelatori dei due esperimenti. Entrambi gli esperimenti si occupano di Fisica del Flavour e il nostro gruppo di ricerca è impegnato principalmente nelle attività legate ai rivelatori RICH (Ring Imaging Cherekov counter), di cui entrambi gli esperimenti fanno uso, e alla relativa elettronica di lettura associata.
In passato sono stati testati diversi tipi di fotomoltiplicatori (PM), al fine di individuare quello più adeguato alle esigenze del RICH di NA62. La scelta è ricaduta sui PM Hamamatsu R7400-U03, attualmente installati.
Recentemente le attività sono state focalizzate agli sviluppi per l’upgrade dei RICH di LHCb. E’ stato progettato e realizzato il Light Leak Detector (LLD), un rivelatore preposto alla rivelazione di luce di fondo, utilizzato anche come sistema di sicurezza. Nel 2023 è iniziato anche un lavoro su un nuovo sistema di calibrazione per i sensori del RICH di LHCb che fa uso di fotoni diffusi (Rayleigh scattering).
Queste attività sono rese possibili grazie alle attrezzature presenti in laboratorio, fra cui si può citare, oltre alla strumentazione standard,
- un Laser (Laser PicoQuant Taiko PDL M1 + head l = 405 nm (50 ps FWHM))
- un oscilloscopio (Tektronix Mso64b 4 channels (4 GHz bandwidth)).
In parallelo, si stanno sviluppando nuovi moduli di elettronica di lettura, come, per esempio, il TIA (transimpedance amplifier) da usare nella catena di readout.
Il laboratorio Semiconduttori è una struttura del Dipartimento di Fisica e Geologia e INFN Perugia in cui vengono effettuati misure di prestazioni e di verifica di diversi tipi di rivelatori a semiconduttore, in particolare Silicio, per la misura sia di particelle cariche che di fotoni.
Il laboratorio è equipaggiato con strumentazione avanzata - alimentatori con controllo remoto, alimentatori tensione-corrente ad alta risoluzione, oscilloscopio ad alta banda, multimetri e diversi sistemi di acquisizione dati basati su FPGA. L’equipaggiamento principale per lo studio delle prestazioni dei rivelatori è un sistema laser impulsato con cui è possibile generare impulsi di luce di brevissima durata (qualche centinaio di picosecondi) e ottima ripetibilità cosi da poter verificare le prestazioni dei rivelatori sia in termini di ampiezza del segnale (relativa a misure di particelle cariche di diverso Z) che in termini di risoluzione temporale (relativa a misure di fotoni, ad esempio Silicon PhotoMultiplier o SiPM).Il servizio di Calcolo scientifico del Dipartimento di Fisica e Geologia è stato sviluppato negli anni in stretta collaborazione con la sezione INFN di Perugia. Il sistema viene utilizzato principalmente per attività di calcolo legate alle esigenze dei gruppi di ricerca locale.
Il sistema e' basato su Ceph per quanto riguarda lo storage e OpenStack per gestire le risorse virtuali. Ulteriori dettagli e le istruzioni di utilizzo possono essere viste nelle pagine dedicate
Al piano terra dell’edificio di Fisica di via A. Pascoli è ospitato il laboratorio di Astrofisica, questo spazio offre aree di lavoro per R&D e manutenzione della strumentazione istallata o da istallare sia presso gli osservatori del dipartimento che per progetti “esterni” di astrofisica delle alte energie come ASTRI, CTA e IMT.
Nel laboratorio vengono sviluppati i software per la gestione da remoto dei telescopi di Bonfigli e Coloti, e si procede all’acquisizione e all’analisi dati delle osservazioni svolte. Da sottolineare l’importanza formativa di quest’area per la formazione di laureandi e dottorandi che qui svolgono una parte importante delle attività di ricerca delle loro tesi e dei loro tirocini.
Inoltre, il laboratorio ospita i telescopi Small IRAIT e MAEDE che vengono utilizzati (con stazionamento libero) per attività di divulgazione.
Il dipartimento di Fisica e Geologia è dotato di 2 stazioni astronomiche, una a Perugia nella zona universitaria di via Bonfigli e l’altra ospitata nella struttura in concessione d’uso gratuito dalla Regione Umbria (Convenzione Repertorio Regionale n. 6132 del 2017) di borgo di Coloti, nell’alta valle del Carpina.
L’osservatorio di via Bonfigli ospita un telescopio newtoniano da 40 cm robotizzato costruito per monitoring di blazar e AGN, costruito ne 1986. La cupola di Coloti ospita invece un telescopio rifrattore con lo specchio primario da 80 cm, completato nei primi anni 2000 come prototipo del telescopio IMT (Infrared Maffei Telescope), installato in Antartide a Dome C per osservazioni astronomiche nell’infrarosso. Entrambi gli osservatori sono dotati di sale e officine, predisposte per effettuare attività di ricerca e divulgazione.
Grazie ai finanziamenti ottenuti con il progetto super-C (Dipartimento di eccellenza), di ricerca di base del dipartimento e all’impegno congiunto del Dipartimento di FisGeo e della sezione INFN di Perugia è attualmente in corso un processo di ammodernamento delle strutture per rendere i 2 osservatori pienamente operativi per l’attività scientifica ed iniziare un programma di monitoraggio di sorgenti variabili e di follow-up sulla base di allerte multifrequenza e multimessaggero, per la ricerca di possibili controparti ottiche di sorgenti variabili o transienti quali nuclei galattici attivi e gramma-ray burst.
Il progetto vede la dotazione del telescopio di Coloti di una camera CCD e di uno spettrografo e la ri-alluminatura dello specchio (operazione attualmente in corso) per ottimizzare le prestazioni dello strumento per le osservazioni alle lunghezze d’onda del visibile. Si sta inoltre lavorando ad un nuovo sistema di robotizzazione di entrambi i telescopi che prevedono un aggiornamento completo delle dotazioni hardware e software degli strumenti.
Il laboratorio è dotato di un microscopio a scansione (di sonda o di testa) che può essere utilizzato come Atomic Force Microscope per visualizzare la morfologia di campioni, con risuluzione nanometrica, oppure come Magnetic Force Microscope, con risoluzione submicrometrica, per visualizzare la configurazione dei domini magnetici in campioni ferromagnetici. Il microscopio è supportato da un banco ottico antivibrante e da un sistema di controllo elettronico e acquisizione dati.
Il Microscopio a forza atomica AFM Solver PRO della NT-MDT consente di effettuare misure sia in aria che in liquido, in modalità contatto e dinamica (tapping). Il microscopio permette di studiare la topografia superficiale di un materiale e la morfologia di campioni biologici con risoluzione nanometrica. Lo strumento permette anche di effettuare misure di microscopia a forza magnetica.
Scannning range in aria
3μm x3 μm range verticale 1.3 μm
50 μm x50 μm range verticale 3 μm
Scanning range in liquido
50 µm x50 µm range verticale 5 µm
Nel laboratorio è presente un banco ottico per misure di Effetto Kerr Magnetoottico in diverse configurazioni, per indagine delle curve di magnetizzazione di film sottili e nanostrutture magnetiche. Il banco è completo di elettromagnete, sorgente laser, polarizzatori a cristallo, modulatore photoelastico, fotodiodo di rivelazione e sistema di amplificazione lockin, oltre alla scheda di acquisizione dati ed al computer di controllo. Nel laboratorio sono anche presenti due workstation con scheda grafica GPU di ultima generazione, dedicate alla simulazione delle proprietà del comportamento di nanostrutture magnetiche attraverso simulazioni micromagnetiche.
Il laboratorio di Spettroscopia Brillouin da onde di spin è dotato di due banchi ottici antivibranti completi di sorgenti laser, fotodiodi ad alta sensibilità, spettrometri basati su interferometro di Fabry-Perot, elettromagneti per campi magnetici fino a 2 Tesla. Uno dei banchi ha anche a disposizione un sistema di microscopia ottica e di movimentazione del campione con risoluzione nanometrica. Sono inoltre disponibili un alimentatore a microonde ed un analizzatore di spettro fino a 30 GHz per la parte di eccitazione e rivelazione delle onde di spin.
Quest' ultimo è costituito da gruppi di ricerca dei seguenti dipartimenti dell' Università degli Studi di Perugia:
Il microscopio FE-SEM è stato acquistato con il contributo della Fondazione Cassa di Risparmio di Perugia
Contatti
L'uso di questo microscopio, per gruppi ed aziende interessate, è disponibile su richiesta contattando:
- PhD Alessandro Di Michele (Referente) - tel. 075 585 2740 - email: alessandro.dimichelefisica.unipg.it
- PhD Helios Vocca (Responsabile) - email: helios.voccaunipg.it
Informazioni tecniche
- Strumento: Microscopio Elettronico a Scansione Field Emission
- Marca: LEO 1525 della ZEISS con colonna GEMINI
- Microanalisi: EDX della BRUKER
Performance:
- Resolution:
1.5nm @ 20kV / WD=2mm
3.5nm @ 1kV / WD=2mm - Range: Acceleration Voltage 0.1kV to 30kV
- Probe Current Range: 4pA to 10nA
- Magnification Range: 20x to 1000kx
- Resolution:
Il laboratorio di Fisica delle Superfici comprende due sistemi di crescita e caratterizzazione di film sottili e multistrati in ultra alto vuoto, dotati di evaporatori per la deposizione e numerose tecniche di analisy disponibili in-situ, come diffrazione di elettroni di bassa e di alta energia per lo studio della struttura dai campioni, analisy chimica attraverso tecnica Auger o XPS, spettroscopia di fotoemissine diretta e inversa, possibilità di sputtering mediante bombardamento ionico e annealing fino a oltre 1000 gradi centigradi.
Il laboratorio è dotato di strumentazione per scattering di raggi X, tecnica che permette la caratterizzazione dei materiali su scala atomica. Nel laboratorio sono installati quattro generatori di raggi X che producono i fasci di ingresso per i diffrattometri dedicati allo studio di una vasta gamma di materiali, dai solidi cristallini alle
biomolecole, in condizioni di temperatura (10 K min) e campi magnetici esterni (1 T max) al campione, variabili.
Gli strumenti, progettati per garantire la massima flessibilità di impiego, possono lavorare su fasci monocromatici di lunghezza d’onda variabile da 0.2 A a 2.2 A (anodi di W, Ag, Mo, Cu, Co, Fe e Cr) e impiegare rivelatori standard (NaI, multidetector a gas, etc.) o diodi PIN ad alta risoluzione (< 50 eV) utilizzati anche per misure di fluorescenza in parallelo alla diffrazione.
Il laboratorio è anche utilizzato per la progettazione e lo sviluppo di sample-environment e componentistica innovativa (monocromatori, collimatori, specchi, rivelatori, etc.) per spettrometri da installare presso le sorgenti internazionali di luce di sincrotrone (ESRF, ELETTRA), di neutroni (ILL, ISIS, ESS), Free Electron Lasers (FERMI) e
laser/FEL (NFFA@Elettra-FERMI). Attualmente sono attive diverse collaborazioni internazionali, principalmente nel contesto delle Analytical Facilities di ESFRI. Tra i progetti in atto si segnalano T-REX@ESS (Collaborazione IT-DE; installazione presso ESS-SE) e TR-OS/RAMAN (Collaborazione UNIPG, UNIMI, UNIROMA1, UNITS, ELETTRA,
INFN; installazione presso NFFA@Elettra-FERMI).
Il Laboratorio è dedicato alla preparazione e allo studio di materiali soffici composti da biomolecole quali ad esempio DNA e proteine. Una preparazione adeguata ed una prima caratterizzazione dei campioni sono fondamentali per l’accesso alle grandi strutture di ricerca internazionali quali sincrotroni e reattori nucleari con le quali i ricercatori del Laboratorio collaborano. Tali esperimenti sono necessari per ottenere informazioni riguardo la struttura e la dinamica di sistemi complessi, non accessibili attraverso le tecniche standard. Per quanto riguarda la preparazione dei campioni, il Laboratorio è dotato di tutto il materiale consumabile necessario per maneggiare campioni di natura biologica e di strumentazione analitica: una bilancia digitale con precisione al decimo di milligrammo, una bilancia termogravimetrica, una centrifuga da eppendorf e tre essiccatori con pompa da vuoto per la liofilizzazione dei campioni. Per lo studio foto-fisico e conformazionale delle molecole in esame il Laboratorio è dotato di uno spettrofotometro UV-Visibile (Jasco V-570) e di uno spettropolarimetro (JASCO-810). Entrambi acquisiscono spettri in un intervallo spettrale che va da circa 190 nm a 900 nm e sono provvisti di controllo della temperatura con la capacità di raggiungere 100°C. Le misure vengono analizzate attraverso software specifici per l’analisi dei dati spettroscopici. Le misure di spettroscopia di Dicroismo Circolare (CD) effettuate con lo spettropolarimetro sono di gran lunga lo strumento più comunemente utilizzato per la caratterizzazione di molecole chirali. Con queste è possibile sondare in modo rapido la struttura secondaria e le proprietà di ripiegamento delle proteine e degli acidi nucleici, comprese strutture di DNA e RNA non canoniche. La spettroscopia CD e di assorbimento UV-Visibile consentono di effettuare studi cinetici e termodinamici, nonché di determinare costanti di affinità per quantificare l’interazione tra biomolecole e ligandi, come ad esempio farmaci.
Il Laboratorio di Fisica Medica del dipartimento è un ambiente di ricerca e sperimentazione specializzato nella fisica applicata alla medicina, fornendo una varietà di strumentazioni e risorse avanzate. Tra queste, sorgenti radioisotopiche a bassa emissione come 241 Americio(), 207 Bismuto (e,) , 14Carbonio (e-), 137Cesio(), 60Cobalto(), 55Ferro(), 22Sodio(e+), 90Stronzio/ 90Yttrio(e-) sono impiegate per la caratterizzazione di rivelatori innovativi. Il laboratorio dispone inoltre di tubi a raggi X di varie specifiche, tra cui modelli Newton Scientific (50 kV, 200 mA), AMPTEK (50 kV, 200 mA), e Pantak SEIFERT (200 kV, 10 mA), che consentono di replicare condizioni cliniche per testare dispositivi sviluppati per applicazioni mediche, sia con fascio diretto che in trasmissione o fluorescenza X.
All'interno del laboratorio sono disponibili 6 postazioni di lavoro, che supportano la conduzione di diversi progetti in parallelo.
Una camera climatica, che permette test su Device Under Test (DUT) in un intervallo termico da -40°C a 70°C, facilita esperimenti in condizioni ambientali diversificate. Attualmente, è in corso di certificazione una nuova camera di misura, con un volume più che doppio rispetto alla camera climatica esistente, per ampliare le possibilità di test su volumi maggiori.
Il laboratorio si distingue per la realizzazione di fantocci e la gestione di movimenti precisi per spostamenti e rotazioni. Al centro delle sue attività c'è lo sviluppo integrato di elettronica di front-end, hardware e software per l'acquisizione di dati ad alta velocità. Questa sinergia è fondamentale per la rilevazione di segnali di piccola ampiezza come quelli bioelettrici e rappresenta un elemento chiave nell'avanzamento della ricerca nel settore medico.
Con la gestione simultanea di diversi progetti di ricerca, il Laboratorio di Fisica Medica gioca un ruolo cruciale nel supporto allo sviluppo di tecnologie e applicazioni innovative nel campo medico.
Nel laboratorio "Sistemi e Dispositivi attivati dal rumore" si esplora l’applicazione della fisica della materia al campo del rumore termico e vibrazionale. Le attività spaziano dalla modellazione stocastica di sistemi non lineari alle misure di rumore termico, con l'obiettivo di sviluppare nuove tecnologie e progettare dispositivi per sistemi integrati e di comunicazione. I ricercatori coinvolti si occupano dello studio e della caratterizzazione di nano- e micro-dispositivi per la sensoristica avanzata, sviluppando tecniche innovative per la misura e l'analisi del rumore in sistemi miniaturizzati. Altri ambiti di ricerca riguardano la progettazione di sensori per applicazioni all’Internet delle cose, sfruttando le proprietà uniche di materiali elettro-attivi a scala nanometrica, e l'esplorazione dei limiti fondamentali nella dissipazione di energia per la progettazione di sistemi energeticamente efficienti.
Il laboratorio di Fisica del Rumore e Energy Harvesting è uno spazio dedicato alla ricerca interdisciplinare che combina principi della fisica del rumore e tecniche di energy harvesting. Situato in un ambiente controllato, il laboratorio è attrezzato con strumentazioni sofisticate per misurare e analizzare le sorgenti di rumore in diversi contesti. I ricercatori che lavorano all'interno del laboratorio studiano anche le potenzialità del rumore applicato all'energy harvesting, cioè la conversione dell'energia ambientale in energia elettrica, principalmente attraverso processi piezoelettrici ed elettrostatici. Le ricerche si concentrano sulla progettazione di sistemi efficienti e sostenibili per la raccolta di energia da fonti vibrazionali. I risultati del laboratorio hanno applicazioni pratiche in settori come l'Internet delle cose (IoT), la sensoristica ambientale e la tecnologia indossabile, contribuendo allo sviluppo di soluzioni energetiche innovative e sostenibili.
Questo laboratorio è dedicato alla sintesi, studio e caratterizzazione di materiali e dispositivi applicati alla raccolta, trasformazione e produzione di energia alle piccole scale. In particolare, riguardo lo studio di materiali, la ricerca si focalizza sulla sintesi e caratterizzazione di materiali nanostrutturati piezoelettrici ed elettrostatici per applicazioni di energy harvesting; materiali smart per la realizzazione di sensori smart auto-alimentati ed infine materiali per la catalisi per la produzione di idrogeno e carbon-neutral fuels. Le tecniche utilizzate comprendono la sintesi chimica e sono-chimica, l’elettro-spinning, lo spin-coating e l’additive manufacturing. Inoltre, nel laboratorio si sviluppano micro e nano generatori realizzati tramite litgrafia e tecniche di stampa 3D FDM, SLA e PAM. La caratterizzazione di harvesters vibrazionali viene svolta tramite una facility comprendente shakers, schede di acquisizione (DAQ), generatori ed analizzatori di segnale. Il laboratorio lavora in sinergia con il c-lab del progetto NANOFAB in fase di realizzazione, il quale disporrà di macchine per la litografia UV ed elettronica (e-beam), Reactive-Ion-Etching (RIE) ed infine una macchina per il Plasma-Enhanced Chemical-Vapor-Deposition (PE-CVD) per la fabbricazione di micro e nano strutture (NEMS, MEMS) grazie al finanziamento del Fondo Ricerca di Ateneo, edizioni 2021 e 2022.